🗊Скачать презентацию Такая разная геометрия

Категория: Математика
Нажмите для полного просмотра!
Скачать презентацию Такая разная геометрия , слайд №1Скачать презентацию Такая разная геометрия , слайд №2Скачать презентацию Такая разная геометрия , слайд №3Скачать презентацию Такая разная геометрия , слайд №4Скачать презентацию Такая разная геометрия , слайд №5Скачать презентацию Такая разная геометрия , слайд №6Скачать презентацию Такая разная геометрия , слайд №7Скачать презентацию Такая разная геометрия , слайд №8Скачать презентацию Такая разная геометрия , слайд №9Скачать презентацию Такая разная геометрия , слайд №10Скачать презентацию Такая разная геометрия , слайд №11Скачать презентацию Такая разная геометрия , слайд №12Скачать презентацию Такая разная геометрия , слайд №13Скачать презентацию Такая разная геометрия , слайд №14Скачать презентацию Такая разная геометрия , слайд №15Скачать презентацию Такая разная геометрия , слайд №16Скачать презентацию Такая разная геометрия , слайд №17Скачать презентацию Такая разная геометрия , слайд №18Скачать презентацию Такая разная геометрия , слайд №19Скачать презентацию Такая разная геометрия , слайд №20Скачать презентацию Такая разная геометрия , слайд №21Скачать презентацию Такая разная геометрия , слайд №22Скачать презентацию Такая разная геометрия , слайд №23Скачать презентацию Такая разная геометрия , слайд №24Скачать презентацию Такая разная геометрия , слайд №25Скачать презентацию Такая разная геометрия , слайд №26Скачать презентацию Такая разная геометрия , слайд №27Скачать презентацию Такая разная геометрия , слайд №28Скачать презентацию Такая разная геометрия , слайд №29Скачать презентацию Такая разная геометрия , слайд №30Скачать презентацию Такая разная геометрия , слайд №31Скачать презентацию Такая разная геометрия , слайд №32Скачать презентацию Такая разная геометрия , слайд №33Скачать презентацию Такая разная геометрия , слайд №34Скачать презентацию Такая разная геометрия , слайд №35Скачать презентацию Такая разная геометрия , слайд №36Скачать презентацию Такая разная геометрия , слайд №37Скачать презентацию Такая разная геометрия , слайд №38Скачать презентацию Такая разная геометрия , слайд №39

Содержание


Слайды и текст этой презентации


Слайд 1


Скачать презентацию Такая разная геометрия , слайд №1
Описание слайда:

Слайд 2





Цели исследования:
Изучить исторический материал, связанный с проблемой параллельности прямых.
Найти, существует ли доказательство  пятого постулата Евклида?
Выявить, существуют ли геометрии, отличные от евклидовой?
Описание слайда:
Цели исследования: Изучить исторический материал, связанный с проблемой параллельности прямых. Найти, существует ли доказательство пятого постулата Евклида? Выявить, существуют ли геометрии, отличные от евклидовой?

Слайд 3





Геометрия Евклида
Первым систематическим изложением геометрии, дошедшим до нашего времени, являются “Начала” – сочинения александрийского математика Евклида.
Описание слайда:
Геометрия Евклида Первым систематическим изложением геометрии, дошедшим до нашего времени, являются “Начала” – сочинения александрийского математика Евклида.

Слайд 4





В “Началах” был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). 
В “Началах” был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). 
Изложение геометрии Евклидом долгое время служило недосягаемым образцом точности, безукоризненности и строгости. 
Только в начале 20 века математики смогли улучшить логические основания геометрии.
Описание слайда:
В “Началах” был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). В “Началах” был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). Изложение геометрии Евклидом долгое время служило недосягаемым образцом точности, безукоризненности и строгости. Только в начале 20 века математики смогли улучшить логические основания геометрии.

Слайд 5





Постулаты Евклида
Из каждой точки ко всякой другой точке можно провести прямую;
Каждую ограниченную прямую можно продолжить неопределённо;
Из любого центра можно описать окружность любого радиуса;
Все прямые углы равны;
И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные эти прямые неограниченно встретятся с той стороны, где углы меньше двух прямых
Описание слайда:
Постулаты Евклида Из каждой точки ко всякой другой точке можно провести прямую; Каждую ограниченную прямую можно продолжить неопределённо; Из любого центра можно описать окружность любого радиуса; Все прямые углы равны; И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные эти прямые неограниченно встретятся с той стороны, где углы меньше двух прямых

Слайд 6





О чем говорится в V постулате Евклида?
Если две прямые а и в образуют при пересечении с третьей прямой внутренние односторонние углы a и в, сумма величин которых меньше двух прямых углов (т.е. меньше 180°; рис. 1), то эти две прямые обязательно пересекаются, причем именно с той стороны от третьей прямой, по которую расположены углы а и в (составляющие вместе менее 180°).
Описание слайда:
О чем говорится в V постулате Евклида? Если две прямые а и в образуют при пересечении с третьей прямой внутренние односторонние углы a и в, сумма величин которых меньше двух прямых углов (т.е. меньше 180°; рис. 1), то эти две прямые обязательно пересекаются, причем именно с той стороны от третьей прямой, по которую расположены углы а и в (составляющие вместе менее 180°).

Слайд 7





Как формулируется равносильная аксиома параллельности?
	К данной прямой через данную вне ее точку можно провести не более одной параллельной прямой.
Описание слайда:
Как формулируется равносильная аксиома параллельности? К данной прямой через данную вне ее точку можно провести не более одной параллельной прямой.

Слайд 8


Скачать презентацию Такая разная геометрия , слайд №8
Описание слайда:

Слайд 9





Угол в 1 угловую секунду достаточно ощутим (например, при астрономических расчетах). Но проверить, что указанные выше прямые а и в пересекаются на расстоянии 206 км от прямой АВ, совсем не просто. Ведь изготовить плоский лист бумаги и линейку более 200 км не представляется возможным. Использовать оптические приборы? Но тогда надо добавить еще один постулат: свет распространяется по прямой (а это уже не геометрия, а физика). А если сумма углов а и в отличается от 180° еще менее чем на 1 угловую секунду?!
Описание слайда:
Угол в 1 угловую секунду достаточно ощутим (например, при астрономических расчетах). Но проверить, что указанные выше прямые а и в пересекаются на расстоянии 206 км от прямой АВ, совсем не просто. Ведь изготовить плоский лист бумаги и линейку более 200 км не представляется возможным. Использовать оптические приборы? Но тогда надо добавить еще один постулат: свет распространяется по прямой (а это уже не геометрия, а физика). А если сумма углов а и в отличается от 180° еще менее чем на 1 угловую секунду?!

Слайд 10


Скачать презентацию Такая разная геометрия , слайд №10
Описание слайда:

Слайд 11





Итак, на базе этих постулатов шло успешное развитие геометрии, но в то время как другие постулаты считались совершенно очевидными, очевидность пятого постулата оспаривалась. Много веков усилия большого числа ученых были направлены на доказательство пятого постулата. Это объяснялось тем, что число аксиом стремились свести к минимуму. 
Итак, на базе этих постулатов шло успешное развитие геометрии, но в то время как другие постулаты считались совершенно очевидными, очевидность пятого постулата оспаривалась. Много веков усилия большого числа ученых были направлены на доказательство пятого постулата. Это объяснялось тем, что число аксиом стремились свести к минимуму. 
Ученые думали, что пятый постулат можно доказать как теорему, опираясь на остальные. Многие геометры пытались обойти его, заменяя пятый постулат другим, казавшимся более очевидным. На этом пути было сформулировано много положений, но все они были эквивалентны пятому постулату Евклида.
Описание слайда:
Итак, на базе этих постулатов шло успешное развитие геометрии, но в то время как другие постулаты считались совершенно очевидными, очевидность пятого постулата оспаривалась. Много веков усилия большого числа ученых были направлены на доказательство пятого постулата. Это объяснялось тем, что число аксиом стремились свести к минимуму. Итак, на базе этих постулатов шло успешное развитие геометрии, но в то время как другие постулаты считались совершенно очевидными, очевидность пятого постулата оспаривалась. Много веков усилия большого числа ученых были направлены на доказательство пятого постулата. Это объяснялось тем, что число аксиом стремились свести к минимуму. Ученые думали, что пятый постулат можно доказать как теорему, опираясь на остальные. Многие геометры пытались обойти его, заменяя пятый постулат другим, казавшимся более очевидным. На этом пути было сформулировано много положений, но все они были эквивалентны пятому постулату Евклида.

Слайд 12





Например:
сумма углов треугольника равна 180°, 
во всех треугольниках сумма углов одна и та же, 
через любую точку внутри угла можно провести секущую, пересекающую обе стороны угла, 
существуют два подобных, но не равных треугольника, 
теорема Пифагора, 
для всякого треугольника существует описанная окружность и др.
Описание слайда:
Например: сумма углов треугольника равна 180°, во всех треугольниках сумма углов одна и та же, через любую точку внутри угла можно провести секущую, пересекающую обе стороны угла, существуют два подобных, но не равных треугольника, теорема Пифагора, для всякого треугольника существует описанная окружность и др.

Слайд 13





   В конце 18 века у некоторых геометров возникла мысль о невозможности доказать пятый постулат. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, противоречащим нашей геометрической интуиции, но логического противоречия не получалось.
   В конце 18 века у некоторых геометров возникла мысль о невозможности доказать пятый постулат. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, противоречащим нашей геометрической интуиции, но логического противоречия не получалось.
Описание слайда:
В конце 18 века у некоторых геометров возникла мысль о невозможности доказать пятый постулат. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, противоречащим нашей геометрической интуиции, но логического противоречия не получалось. В конце 18 века у некоторых геометров возникла мысль о невозможности доказать пятый постулат. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, противоречащим нашей геометрической интуиции, но логического противоречия не получалось.

Слайд 14


Скачать презентацию Такая разная геометрия , слайд №14
Описание слайда:

Слайд 15





	Не может ли быть так, что заменив пятый постулат его отрицанием, мы придём к новой неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но, тем не менее не содержит никаких логических противоречий?
	Не может ли быть так, что заменив пятый постулат его отрицанием, мы придём к новой неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но, тем не менее не содержит никаких логических противоречий?
Описание слайда:
Не может ли быть так, что заменив пятый постулат его отрицанием, мы придём к новой неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но, тем не менее не содержит никаких логических противоречий? Не может ли быть так, что заменив пятый постулат его отрицанием, мы придём к новой неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но, тем не менее не содержит никаких логических противоречий?

Слайд 16


Скачать презентацию Такая разная геометрия , слайд №16
Описание слайда:

Слайд 17





Геометрия Лобачевского
Лобачевский  построил новую геометрию, откинув постулат Евклида, заменив его другим, прямо противоположным по смыслу: “Через точку А вне прямой а в плоскости, определяемой точкой А и прямой а, проходит по крайней мере две прямые с и в не имеющие общей точки с прямой а”.
Описание слайда:
Геометрия Лобачевского Лобачевский построил новую геометрию, откинув постулат Евклида, заменив его другим, прямо противоположным по смыслу: “Через точку А вне прямой а в плоскости, определяемой точкой А и прямой а, проходит по крайней мере две прямые с и в не имеющие общей точки с прямой а”.

Слайд 18





И не получил противоречия. 
И не получил противоречия. 
Отсюда следует, что таких прямых может быть бесконечное количество.
 Доказывая много десятков теорем, не обнаруживая логических противоречий, Лобачевскому пришла в голову догадка о непротиворечивости такой геометрии, он назвал её воображаемой. 
В геометрии Лобачевского сохраняются все теоремы, которые в евклидовой геометрии можно доказать без использования пятого постулата.
Описание слайда:
И не получил противоречия. И не получил противоречия. Отсюда следует, что таких прямых может быть бесконечное количество. Доказывая много десятков теорем, не обнаруживая логических противоречий, Лобачевскому пришла в голову догадка о непротиворечивости такой геометрии, он назвал её воображаемой. В геометрии Лобачевского сохраняются все теоремы, которые в евклидовой геометрии можно доказать без использования пятого постулата.

Слайд 19





Например:
вертикальные углы равны; 
углы при основании равнобедренного треугольника равны; 
из данной точки можно опустить на данную прямую только один перпендикуляр 
и др.
Описание слайда:
Например: вертикальные углы равны; углы при основании равнобедренного треугольника равны; из данной точки можно опустить на данную прямую только один перпендикуляр и др.

Слайд 20





Однако, теоремы, где применяется аксиома параллельности прямых, видоизменяются:
Теорема о сумме углов треугольника готовит первый “сюрприз”: в геометрии Лобачевского сумма углов любого треугольника меньше 180°. Разность между 180° и суммой углов треугольника положительна и называется дефектом (D) этого треугольника. Формула для площади треугольника S=k*D, то есть площадь связана с его дефектом. Самую большую площадь имеет треугольник с нулевыми углами, а его стороны имеют бесконечную длину
Описание слайда:
Однако, теоремы, где применяется аксиома параллельности прямых, видоизменяются: Теорема о сумме углов треугольника готовит первый “сюрприз”: в геометрии Лобачевского сумма углов любого треугольника меньше 180°. Разность между 180° и суммой углов треугольника положительна и называется дефектом (D) этого треугольника. Формула для площади треугольника S=k*D, то есть площадь связана с его дефектом. Самую большую площадь имеет треугольник с нулевыми углами, а его стороны имеют бесконечную длину

Слайд 21





В геометрии Лобачевского:
Два неравных равносторонних треугольника имеют неравные углы. 
В геометрии Лобачевского не существует подобных фигур. 
Если углы одного треугольника равны соответственно углам другого треугольника, то эти треугольники равны. 
Геометрическое место точек, находящихся на данном расстоянии от данной прямой и лежащих по одну сторону есть кривая линия, которая называется эквидистантой.
Описание слайда:
В геометрии Лобачевского: Два неравных равносторонних треугольника имеют неравные углы. В геометрии Лобачевского не существует подобных фигур. Если углы одного треугольника равны соответственно углам другого треугольника, то эти треугольники равны. Геометрическое место точек, находящихся на данном расстоянии от данной прямой и лежащих по одну сторону есть кривая линия, которая называется эквидистантой.

Слайд 22





Возможные расположения двух прямых на плоскости Лобачевского: 
Две несовпадающие прямые либо пересекаются в одной точке, либо параллельны, либо являются расходящимися
Описание слайда:
Возможные расположения двух прямых на плоскости Лобачевского: Две несовпадающие прямые либо пересекаются в одной точке, либо параллельны, либо являются расходящимися

Слайд 23





Геометрия Римана
	Через некоторое время идеи Лобачевского были приняты математиками, и следующим этапом развития геометрии стала эллиптическая геометрия Римана. Риман исходил из того, что через точку, не лежащую на данной прямой, вообще нельзя провести прямую, не пересекающую данную.
Описание слайда:
Геометрия Римана Через некоторое время идеи Лобачевского были приняты математиками, и следующим этапом развития геометрии стала эллиптическая геометрия Римана. Риман исходил из того, что через точку, не лежащую на данной прямой, вообще нельзя провести прямую, не пересекающую данную.

Слайд 24





В геометрии Римана:
две прямые всегда пересекаются, параллельных прямых совсем нет; 
сумма углов прямолинейного треугольника больше 180°; 
прямая имеет конечную длину, плоскость – конечную площадь и др.
Описание слайда:
В геометрии Римана: две прямые всегда пересекаются, параллельных прямых совсем нет; сумма углов прямолинейного треугольника больше 180°; прямая имеет конечную длину, плоскость – конечную площадь и др.

Слайд 25


Скачать презентацию Такая разная геометрия , слайд №25
Описание слайда:

Слайд 26





Каково же применение нелинейных геометрий?
Геометрии Евклида, Лобачевского и Римана являются в свою очередь частными случаями общей геометрии Римана для многомерных искривлённых пространств.
Описание слайда:
Каково же применение нелинейных геометрий? Геометрии Евклида, Лобачевского и Римана являются в свою очередь частными случаями общей геометрии Римана для многомерных искривлённых пространств.

Слайд 27





Современники Лобачевского, потом и Римана отказывались принимать новую геометрию. Но в начале 20 века, как гром среди ясного неба Эйнштейн создаёт теорию относительности, частным случаем которой является теория тяготения Ньютона. 
Современники Лобачевского, потом и Римана отказывались принимать новую геометрию. Но в начале 20 века, как гром среди ясного неба Эйнштейн создаёт теорию относительности, частным случаем которой является теория тяготения Ньютона. 
Оказалось, что взаимосвязь пространства и времени, описываемая в теории относительности, имеет непосредственное отношение к геометрии Лобачевского. 
Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского.
Описание слайда:
Современники Лобачевского, потом и Римана отказывались принимать новую геометрию. Но в начале 20 века, как гром среди ясного неба Эйнштейн создаёт теорию относительности, частным случаем которой является теория тяготения Ньютона. Современники Лобачевского, потом и Римана отказывались принимать новую геометрию. Но в начале 20 века, как гром среди ясного неба Эйнштейн создаёт теорию относительности, частным случаем которой является теория тяготения Ньютона. Оказалось, что взаимосвязь пространства и времени, описываемая в теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского.

Слайд 28





Следствием теории относительности явился в частности тот факт, что наше как мы думали трёхмерное евклидово пространство на самом деле таковым не является. 
Следствием теории относительности явился в частности тот факт, что наше как мы думали трёхмерное евклидово пространство на самом деле таковым не является. 
А живём мы в четырёхмерном искривлённом пространстве-времени, которое описывается общей геометрией Римана. 
Тяготение на самом деле результат искривления пространства вблизи массивных тел. 
Следствием этого является замедление времени вблизи тяжелых тел, кратчайшее расстояние между точками не прямая, а некоторая кривая и др.
Описание слайда:
Следствием теории относительности явился в частности тот факт, что наше как мы думали трёхмерное евклидово пространство на самом деле таковым не является. Следствием теории относительности явился в частности тот факт, что наше как мы думали трёхмерное евклидово пространство на самом деле таковым не является. А живём мы в четырёхмерном искривлённом пространстве-времени, которое описывается общей геометрией Римана. Тяготение на самом деле результат искривления пространства вблизи массивных тел. Следствием этого является замедление времени вблизи тяжелых тел, кратчайшее расстояние между точками не прямая, а некоторая кривая и др.

Слайд 29





Установлено достоверно замедление времени при скоростях, близких к скорости света. Параметры орбиты Меркурия, самой близкой к Солнцу планеты не укладывались в теорию тяготения Ньютона, а теория относительности смогла это объяснить искривлением пространства вблизи Солнца.
Установлено достоверно замедление времени при скоростях, близких к скорости света. Параметры орбиты Меркурия, самой близкой к Солнцу планеты не укладывались в теорию тяготения Ньютона, а теория относительности смогла это объяснить искривлением пространства вблизи Солнца.
Описание слайда:
Установлено достоверно замедление времени при скоростях, близких к скорости света. Параметры орбиты Меркурия, самой близкой к Солнцу планеты не укладывались в теорию тяготения Ньютона, а теория относительности смогла это объяснить искривлением пространства вблизи Солнца. Установлено достоверно замедление времени при скоростях, близких к скорости света. Параметры орбиты Меркурия, самой близкой к Солнцу планеты не укладывались в теорию тяготения Ньютона, а теория относительности смогла это объяснить искривлением пространства вблизи Солнца.

Слайд 30


Скачать презентацию Такая разная геометрия , слайд №30
Описание слайда:

Слайд 31


Скачать презентацию Такая разная геометрия , слайд №31
Описание слайда:

Слайд 32


Скачать презентацию Такая разная геометрия , слайд №32
Описание слайда:

Слайд 33





Сейчас вселенная расширяется, но если масса вещества всей вселенной превысит определенный порог, то расширение сменится сжатием, то есть пространство будет искривлено таким образом, что луч света, однажды покинув одну точку, вернется обратно, а это значит, мы живем в мире эллиптической геометрии Римана. Если массы не хватит, то вселенная будет расширяться неограниченно, а значит, мы живем в мире гиперболической геометрии Лобачевского
Описание слайда:
Сейчас вселенная расширяется, но если масса вещества всей вселенной превысит определенный порог, то расширение сменится сжатием, то есть пространство будет искривлено таким образом, что луч света, однажды покинув одну точку, вернется обратно, а это значит, мы живем в мире эллиптической геометрии Римана. Если массы не хватит, то вселенная будет расширяться неограниченно, а значит, мы живем в мире гиперболической геометрии Лобачевского

Слайд 34


Скачать презентацию Такая разная геометрия , слайд №34
Описание слайда:

Слайд 35





Исследования Саккери 
Гипотезу тупого угла, допускающую существование четырехугольника, у которого четвертый угол ф тупой, Саккери отверг при помощи строгого рассуждения. Однако доказать, что и гипотеза острого угла неверна, ни сам Саккери, ни его последователи не смогли. Неприступная "крепость" пятого постулата осталась непокоренной.
Описание слайда:
Исследования Саккери Гипотезу тупого угла, допускающую существование четырехугольника, у которого четвертый угол ф тупой, Саккери отверг при помощи строгого рассуждения. Однако доказать, что и гипотеза острого угла неверна, ни сам Саккери, ни его последователи не смогли. Неприступная "крепость" пятого постулата осталась непокоренной.

Слайд 36





Исследования Лежандра 
	Французского математик Адриен Мари Лежандр, в каждом издании книги, посвященной евклидовой геометрии, приводил рассуждение, в котором, по его мнению, доказывался пятый постулат. 
	Но неизменно в следующем издании автор, признавая, что в его рассуждении использовалось некое утверждение (не сформулированное им явно) - "очевидное", но в действительности представлявшее собой новую аксиому, эквивалентную пятому постулату. 
	Ни одна из попыток Лежандра не привела к успеху.
Описание слайда:
Исследования Лежандра Французского математик Адриен Мари Лежандр, в каждом издании книги, посвященной евклидовой геометрии, приводил рассуждение, в котором, по его мнению, доказывался пятый постулат. Но неизменно в следующем издании автор, признавая, что в его рассуждении использовалось некое утверждение (не сформулированное им явно) - "очевидное", но в действительности представлявшее собой новую аксиому, эквивалентную пятому постулату. Ни одна из попыток Лежандра не привела к успеху.

Слайд 37





Исследования Гаусса
	Гаусс обратился к теории параллельных в 1792 г. Сначала он надеялся доказать пятый постулат, но затем пришел к мысли о построении новой геометрии, которую назвал неевклидовой. 
В 1817 г. в одном из писем признался: "Я прихожу все более к убеждению, что необходимость нашей геометрии не может быть доказана". Но обнародовать эти идеи он не решился из боязни быть непонятым.
Описание слайда:
Исследования Гаусса Гаусс обратился к теории параллельных в 1792 г. Сначала он надеялся доказать пятый постулат, но затем пришел к мысли о построении новой геометрии, которую назвал неевклидовой. В 1817 г. в одном из писем признался: "Я прихожу все более к убеждению, что необходимость нашей геометрии не может быть доказана". Но обнародовать эти идеи он не решился из боязни быть непонятым.

Слайд 38





Исследования Януша Больяй
	Творцом новой геометрии стал так же и венгерский математик Янош Больяй (1802 - 1860). В отличие от Гаусса он стремился распространить свои идеи, но большинство математиков тогда еще не были готовы их воспринять.

Результаты Яноша Больяя были сжато изложены в 1832 г. в приложении книге его отца, Фаркаша Больяя. Труд Я. Больяя "Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида (что a priori никогда решено быть не может)" обычно кратко называют "Аппендикс" (от лат. "приложение").
Описание слайда:
Исследования Януша Больяй Творцом новой геометрии стал так же и венгерский математик Янош Больяй (1802 - 1860). В отличие от Гаусса он стремился распространить свои идеи, но большинство математиков тогда еще не были готовы их воспринять. Результаты Яноша Больяя были сжато изложены в 1832 г. в приложении книге его отца, Фаркаша Больяя. Труд Я. Больяя "Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида (что a priori никогда решено быть не может)" обычно кратко называют "Аппендикс" (от лат. "приложение").

Слайд 39





Исследования Лобачевского
Русский математик, профессор Казанского университета Николай Иванович Лобачевский, писал, что задача о параллельных прямых представляет собой "трудность, до сих пор непобедимую, но между тем заключающую в себе истины ощутительные, вне всякого сомнения, и столь важные для целей науки, что никак не могут быть обойдены".
Описание слайда:
Исследования Лобачевского Русский математик, профессор Казанского университета Николай Иванович Лобачевский, писал, что задача о параллельных прямых представляет собой "трудность, до сих пор непобедимую, но между тем заключающую в себе истины ощутительные, вне всякого сомнения, и столь важные для целей науки, что никак не могут быть обойдены".


Презентацию на тему Такая разная геометрия можно скачать бесплатно ниже:

Похожие презентации
Mypresentation.ru
Загрузить презентацию