Презентация Теоремы синусов и косинусов. 9 КЛАСС

Категория: Математика


500500500500500500500500500500500500500500500500500500500500500

Вы можете ознакомиться и скачать Презентация Теоремы синусов и косинусов. 9 КЛАСС. Презентация содержит 21 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.


Слайды и текст этой презентации

Слайд 1
Описание слайда:
Теоремы синусов и косинусов. ГЕОМЕТРИЯ, 9 КЛАСС.

Слайд 2
Описание слайда:

Слайд 3
Описание слайда:

Слайд 4
Описание слайда:
Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов, были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» Евклида. Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов, были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» Евклида.

Слайд 5
Описание слайда:
Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях математиков стран Средней Азии. Теорему косинусов для сферического треугольника в привычном нам виде сформулировал Региомонтан, назвав её «теоремой Альбатегния» (по имени ал-Баттани). Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях математиков стран Средней Азии. Теорему косинусов для сферического треугольника в привычном нам виде сформулировал Региомонтан, назвав её «теоремой Альбатегния» (по имени ал-Баттани).

Слайд 6
Описание слайда:
В Европе теорему косинусов популяризовал Франсуа Виет в XVI столетии. В начале XIX столетия её стали записывать в принятых по сей день алгебраических обозначениях. В Европе теорему косинусов популяризовал Франсуа Виет в XVI столетии. В начале XIX столетия её стали записывать в принятых по сей день алгебраических обозначениях.

Слайд 7
Описание слайда:

Слайд 8
Описание слайда:

Слайд 9
Описание слайда:

Слайд 10
Описание слайда:
Самое древнее доказательство для теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике» написанной в XIII веке. Теорема синусов для сферического треугольника была доказана математиками средневекового Востока ещё в X веке. В труде Ал-Джайяни XI века «Книга о неизвестных дугах сферы» приводилось общее доказательство теоремы синусов на сфере Самое древнее доказательство для теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике» написанной в XIII веке. Теорема синусов для сферического треугольника была доказана математиками средневекового Востока ещё в X веке. В труде Ал-Джайяни XI века «Книга о неизвестных дугах сферы» приводилось общее доказательство теоремы синусов на сфере

Слайд 11
Описание слайда:

Слайд 12
Описание слайда:
Замечание: Можно доказать, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности. Следовательно, для любого треугольника ABC со сторонами AB=c, BC=a, CA=b имеют место равенства Замечание: Можно доказать, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности. Следовательно, для любого треугольника ABC со сторонами AB=c, BC=a, CA=b имеют место равенства Где R – радиус описанной окружности.

Слайд 13
Описание слайда:

Слайд 14
Описание слайда:

Слайд 15
Описание слайда:

Слайд 16
Описание слайда:

Слайд 17
Описание слайда:

Слайд 18
Описание слайда:

Слайд 19
Описание слайда:

Слайд 20
Описание слайда:

Слайд 21
Описание слайда:
Используемые источники: http://ppt4web.ru/geometrija/teoremy-sinusov-i-kosinusov0.html http://nsportal.ru/shkola/geometriya/library/2014/10/15/teorema-sinusov-i-kosinusov https://upload.wikimedia.org/wikipedia/commons/thumb/1/14/Johannes_Regiomontanus2.jpg/500px-Johannes_Regiomontanus2.jpg http://img1.liveinternet.ru/images/attach/c/10/110/217/110217775_Nesreddi_tusi.jpg http://www.biografguru.ru/about/evklid/?q=3117



Похожие презентации

Mypresentation.ru

Загрузить презентацию