🗊Теория горения горючих дисперсных материалов Лекция 7 по теории горения и взрыва для гр. ДБЖ-09

Категория: Физика
Нажмите для полного просмотра!
Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №1Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №2Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №3Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №4Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №5Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №6Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №7Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №8Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №9Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №10Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №11Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №12Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №13Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №14Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №15Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №16Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №17Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №18

Вы можете ознакомиться и скачать Теория горения горючих дисперсных материалов Лекция 7 по теории горения и взрыва для гр. ДБЖ-09. Презентация содержит 18 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Теория горения горючих дисперсных материалов 
Лекция 7 по теории горения и взрыва для гр. ДБЖ-09
Описание слайда:
Теория горения горючих дисперсных материалов Лекция 7 по теории горения и взрыва для гр. ДБЖ-09

Слайд 2


Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №2
Описание слайда:

Слайд 3





Горение жидкостей представляет собой сложный физико-химический процесс, протекающий при взаимном влиянии кинетических, тепловых и гидродинамических явлений. Горение жидкостей происходит в газовой (паровой) фазе. В результате испарения над поверхностью жидкости образуется паровая струя, смешение и химическое взаимодействие которой с кислородом воздуха обеспечивает формирование зоны горения.
Описание слайда:
Горение жидкостей представляет собой сложный физико-химический процесс, протекающий при взаимном влиянии кинетических, тепловых и гидродинамических явлений. Горение жидкостей происходит в газовой (паровой) фазе. В результате испарения над поверхностью жидкости образуется паровая струя, смешение и химическое взаимодействие которой с кислородом воздуха обеспечивает формирование зоны горения.

Слайд 4





Важнейшей характеристикой жидкости, от которой зависит процесс горения, является температура кипения – температура, при которой происходит переход вещества из жидкого состояния в парообразное не только на поверхности, как при испарении, но и по всему объему.
Важнейшей характеристикой жидкости, от которой зависит процесс горения, является температура кипения – температура, при которой происходит переход вещества из жидкого состояния в парообразное не только на поверхности, как при испарении, но и по всему объему.
Температура кипения индивидуальных углеводородов при атмосферном давлении может быть определена:
tкип=(10√10М – 375) – 150 
где М – молекулярная масса вещества.
Описание слайда:
Важнейшей характеристикой жидкости, от которой зависит процесс горения, является температура кипения – температура, при которой происходит переход вещества из жидкого состояния в парообразное не только на поверхности, как при испарении, но и по всему объему. Важнейшей характеристикой жидкости, от которой зависит процесс горения, является температура кипения – температура, при которой происходит переход вещества из жидкого состояния в парообразное не только на поверхности, как при испарении, но и по всему объему. Температура кипения индивидуальных углеводородов при атмосферном давлении может быть определена: tкип=(10√10М – 375) – 150 где М – молекулярная масса вещества.

Слайд 5





Температурные пределы воспламенения применяют при расчете безопасных температурных режимов работы закрытых технологических аппаратов с жидкостями и летучими твердыми веществами. Безопасной (в отношении возможности образования взрывоопасных паровоздушных смесей) следует считать температуру веществ tбез, оС при которой соблюдается следующие неравенства:
Температурные пределы воспламенения применяют при расчете безопасных температурных режимов работы закрытых технологических аппаратов с жидкостями и летучими твердыми веществами. Безопасной (в отношении возможности образования взрывоопасных паровоздушных смесей) следует считать температуру веществ tбез, оС при которой соблюдается следующие неравенства:
tбез ≤ tн + Δtн
tв + Δtв ≤ tбез ≤0,8 tсв
где Δtн, Δtв – допустимые величины температур, зависящие от природы жидкости, tсв –температура самовоспламенения жидкости.
Описание слайда:
Температурные пределы воспламенения применяют при расчете безопасных температурных режимов работы закрытых технологических аппаратов с жидкостями и летучими твердыми веществами. Безопасной (в отношении возможности образования взрывоопасных паровоздушных смесей) следует считать температуру веществ tбез, оС при которой соблюдается следующие неравенства: Температурные пределы воспламенения применяют при расчете безопасных температурных режимов работы закрытых технологических аппаратов с жидкостями и летучими твердыми веществами. Безопасной (в отношении возможности образования взрывоопасных паровоздушных смесей) следует считать температуру веществ tбез, оС при которой соблюдается следующие неравенства: tбез ≤ tн + Δtн tв + Δtв ≤ tбез ≤0,8 tсв где Δtн, Δtв – допустимые величины температур, зависящие от природы жидкости, tсв –температура самовоспламенения жидкости.

Слайд 6





Состояние вещества, при котором исчезает различие между его жидкой и газообразной фазами, называется критическим. Оно возникает при определенных значениях давления и температуры, называемых критическими: критической называется температура, выше которой вещество не может находиться в жидком состоянии; критическим называется давление, при котором еще сохраняется возможность сжижения газообразной фазы.
Состояние вещества, при котором исчезает различие между его жидкой и газообразной фазами, называется критическим. Оно возникает при определенных значениях давления и температуры, называемых критическими: критической называется температура, выше которой вещество не может находиться в жидком состоянии; критическим называется давление, при котором еще сохраняется возможность сжижения газообразной фазы.
Объем, который занимает вещество в критическом состоянии, также называется критическим. Критические параметры вещества связаны следующим соотношением:
Zкр=Pкр· Vкр/RTкр
R– универсальная газовая постоянная; Zкр– константа, равная 0,375 (для газов, удовлетворяющих уравнению состояния Ван-дер-Ваальса; для паров углеводородов тяжелее пропана – 0,27).
Описание слайда:
Состояние вещества, при котором исчезает различие между его жидкой и газообразной фазами, называется критическим. Оно возникает при определенных значениях давления и температуры, называемых критическими: критической называется температура, выше которой вещество не может находиться в жидком состоянии; критическим называется давление, при котором еще сохраняется возможность сжижения газообразной фазы. Состояние вещества, при котором исчезает различие между его жидкой и газообразной фазами, называется критическим. Оно возникает при определенных значениях давления и температуры, называемых критическими: критической называется температура, выше которой вещество не может находиться в жидком состоянии; критическим называется давление, при котором еще сохраняется возможность сжижения газообразной фазы. Объем, который занимает вещество в критическом состоянии, также называется критическим. Критические параметры вещества связаны следующим соотношением: Zкр=Pкр· Vкр/RTкр R– универсальная газовая постоянная; Zкр– константа, равная 0,375 (для газов, удовлетворяющих уравнению состояния Ван-дер-Ваальса; для паров углеводородов тяжелее пропана – 0,27).

Слайд 7





По способам хранения и транспортирования вещества можно разделить на четыре основные категории:
По способам хранения и транспортирования вещества можно разделить на четыре основные категории:
вещества, у которых критическая температура ниже температуры окружающей среды,  называются криогенными, для сжижения их необходимо охладить и сжать. Поведение разлитой криогенной жидкости подобно поведению воды, налитой на раскаленную поверхность: капли жидкости парят над поверхностью подобно пузырькам кипящей воды;
вещества, у которых критическая температура выше, а точка кипения ниже температуры окружающей среды. Для сжижения их достаточно сжать, они отличаются способностью к "мгновенному испарению", то есть при разгерметизации емкости части жидкости испаряется, а оставшаяся охлаждается до точки кипения при атмосферном давлении;
вещества, у которых критическое давление выше атмосферного и точка кипения выше температуры окружающей среды, находятся при атмосферном давлении в жидком состоянии, в холодную погоду при атмосферном давлении бутан – жидкость, а этиленоксид в жаркую погоду – сжиженный газ;
вещества, содержащиеся при повышенных температурах. Жидкости 3-й категории, указанные выше, в рабочих условиях могут вести себя подобно сжиженным газам, если они содержатся при подводе тепла и под давлением при температурах выше их атмосферной точки кипения. Характерным примером может служить водяной пар в котлах.
Описание слайда:
По способам хранения и транспортирования вещества можно разделить на четыре основные категории: По способам хранения и транспортирования вещества можно разделить на четыре основные категории: вещества, у которых критическая температура ниже температуры окружающей среды, называются криогенными, для сжижения их необходимо охладить и сжать. Поведение разлитой криогенной жидкости подобно поведению воды, налитой на раскаленную поверхность: капли жидкости парят над поверхностью подобно пузырькам кипящей воды; вещества, у которых критическая температура выше, а точка кипения ниже температуры окружающей среды. Для сжижения их достаточно сжать, они отличаются способностью к "мгновенному испарению", то есть при разгерметизации емкости части жидкости испаряется, а оставшаяся охлаждается до точки кипения при атмосферном давлении; вещества, у которых критическое давление выше атмосферного и точка кипения выше температуры окружающей среды, находятся при атмосферном давлении в жидком состоянии, в холодную погоду при атмосферном давлении бутан – жидкость, а этиленоксид в жаркую погоду – сжиженный газ; вещества, содержащиеся при повышенных температурах. Жидкости 3-й категории, указанные выше, в рабочих условиях могут вести себя подобно сжиженным газам, если они содержатся при подводе тепла и под давлением при температурах выше их атмосферной точки кипения. Характерным примером может служить водяной пар в котлах.

Слайд 8





Горение твердых веществ. В условиях большинства пожаров горят твердые вещества, которые широко используются в различных отраслях и быту. К ним относятся органические и неорганические вещества и материалы.
Описание слайда:
Горение твердых веществ. В условиях большинства пожаров горят твердые вещества, которые широко используются в различных отраслях и быту. К ним относятся органические и неорганические вещества и материалы.

Слайд 9





Горение органических материалов.
Описание слайда:
Горение органических материалов.

Слайд 10





Полимеры отличаются высоким содержанием углерода, и большинство из них  не содержит кислород, поэтому для их горения необходим значительный объем воздуха 10…12 м3/кг. Горение полимеров происходит с образованием продуктов неполного сгорания – сажи.
Полимеры отличаются высоким содержанием углерода, и большинство из них  не содержит кислород, поэтому для их горения необходим значительный объем воздуха 10…12 м3/кг. Горение полимеров происходит с образованием продуктов неполного сгорания – сажи.
Описание слайда:
Полимеры отличаются высоким содержанием углерода, и большинство из них не содержит кислород, поэтому для их горения необходим значительный объем воздуха 10…12 м3/кг. Горение полимеров происходит с образованием продуктов неполного сгорания – сажи. Полимеры отличаются высоким содержанием углерода, и большинство из них не содержит кислород, поэтому для их горения необходим значительный объем воздуха 10…12 м3/кг. Горение полимеров происходит с образованием продуктов неполного сгорания – сажи.

Слайд 11





При горении жидкости, массовую скорость выгорания твердых веществ относят к единице поверхности горения, то есть поверхности горючего вещества, с которой в данный момент времени в зону горения поступают пары и газы. Такая массовая скорость выгорания твердых веществ называется удельной и не зависит от размеров поверхности твердых веществ и изменяется в зависимости от температуры и влажности веществ.

Практическое определение удельной скорости выгорания твердых материалов очень затруднено, так как поверхность горения многих из них не представляет ровную плоскость. В связи с этим расчет скорости выгорания ведут на единицу площади проекции поверхности горения на горизонтальную плоскость.
Описание слайда:
При горении жидкости, массовую скорость выгорания твердых веществ относят к единице поверхности горения, то есть поверхности горючего вещества, с которой в данный момент времени в зону горения поступают пары и газы. Такая массовая скорость выгорания твердых веществ называется удельной и не зависит от размеров поверхности твердых веществ и изменяется в зависимости от температуры и влажности веществ. Практическое определение удельной скорости выгорания твердых материалов очень затруднено, так как поверхность горения многих из них не представляет ровную плоскость. В связи с этим расчет скорости выгорания ведут на единицу площади проекции поверхности горения на горизонтальную плоскость.

Слайд 12





Горючая пыль – это дисперсная система, состоящая из твердых частиц размером менее 850 мкм, находящихся во взвешенном или осевшем состоянии в газовой среде, способная к самостоятельному горению в воздухе нормального состава.
Горючая пыль – это дисперсная система, состоящая из твердых частиц размером менее 850 мкм, находящихся во взвешенном или осевшем состоянии в газовой среде, способная к самостоятельному горению в воздухе нормального состава.
 Пыли по общей классификации коллоидно-дисперсных систем относятся к аэрозолям, в которых дисперсной средой является воздух, а дисперсной фазой – твердое вещество в раздробленном состоянии. 
Пыль может образовываться при механическом измельчении твердых тел, а также при получении порошкообразных и пылеобразных веществ методами кристаллизации и сублимации. Осевшая пыль называется аэрогелем (пыль – гель), пыль, находящаяся во взвешенном состоянии, называется аэрозолем (пыль – аэровзвесь); аэрогели и аэровзвеси являются гетерогенными системами. Пыли горючих веществ являются пожаро- и взрывоопасными.
Описание слайда:
Горючая пыль – это дисперсная система, состоящая из твердых частиц размером менее 850 мкм, находящихся во взвешенном или осевшем состоянии в газовой среде, способная к самостоятельному горению в воздухе нормального состава. Горючая пыль – это дисперсная система, состоящая из твердых частиц размером менее 850 мкм, находящихся во взвешенном или осевшем состоянии в газовой среде, способная к самостоятельному горению в воздухе нормального состава. Пыли по общей классификации коллоидно-дисперсных систем относятся к аэрозолям, в которых дисперсной средой является воздух, а дисперсной фазой – твердое вещество в раздробленном состоянии. Пыль может образовываться при механическом измельчении твердых тел, а также при получении порошкообразных и пылеобразных веществ методами кристаллизации и сублимации. Осевшая пыль называется аэрогелем (пыль – гель), пыль, находящаяся во взвешенном состоянии, называется аэрозолем (пыль – аэровзвесь); аэрогели и аэровзвеси являются гетерогенными системами. Пыли горючих веществ являются пожаро- и взрывоопасными.

Слайд 13





ГОСТ 12.1.044-84 ССБТ регламентирует следующие показатели пожаро- и взрывоопасности горючих  аэрозолей и аэрогелей:
ГОСТ 12.1.044-84 ССБТ регламентирует следующие показатели пожаро- и взрывоопасности горючих  аэрозолей и аэрогелей:
для горючих пылей во взвешенном состоянии: нижний концентрационный предел распространения пламени (НКПР), минимальная энергия зажигания, максимальное давление взрыва, скорость нарастания давления при разрыве, минимальное взрывоопасное содержание кислорода;
для пылей, находящихся в осевшем состоянии: температура воспламенения, температура самовоспламенения, температура самонагревания, температура тления, температурные условия теплового самовозгорания, минимальная энергия зажигания, способность гореть и взрываться при взаимодействии с водой, кислородом воздуха и другими веществами.
Описание слайда:
ГОСТ 12.1.044-84 ССБТ регламентирует следующие показатели пожаро- и взрывоопасности горючих аэрозолей и аэрогелей: ГОСТ 12.1.044-84 ССБТ регламентирует следующие показатели пожаро- и взрывоопасности горючих аэрозолей и аэрогелей: для горючих пылей во взвешенном состоянии: нижний концентрационный предел распространения пламени (НКПР), минимальная энергия зажигания, максимальное давление взрыва, скорость нарастания давления при разрыве, минимальное взрывоопасное содержание кислорода; для пылей, находящихся в осевшем состоянии: температура воспламенения, температура самовоспламенения, температура самонагревания, температура тления, температурные условия теплового самовозгорания, минимальная энергия зажигания, способность гореть и взрываться при взаимодействии с водой, кислородом воздуха и другими веществами.

Слайд 14





Кондуктивный механизм распространения горения (теплопроводный), продукты горения нагревают воздух, и воздух нагревает частицу до температуры воспламенения, так распространяется горение. В аэровзвесях много воздуха и мало твердой фазы; твердая фаза – является источником тепла, воздух основной поглотитель этого тепла и является адиабатической характеристикой. 
Кондуктивный механизм распространения горения (теплопроводный), продукты горения нагревают воздух, и воздух нагревает частицу до температуры воспламенения, так распространяется горение. В аэровзвесях много воздуха и мало твердой фазы; твердая фаза – является источником тепла, воздух основной поглотитель этого тепла и является адиабатической характеристикой. 
Скорость распространения горения должна зависеть от размеров частиц в существенной мере; частицы, горящие в газовой фазе, горят по закону Средневского: время горения пропорционально квадрату диаметра частиц
t=k·d2
Описание слайда:
Кондуктивный механизм распространения горения (теплопроводный), продукты горения нагревают воздух, и воздух нагревает частицу до температуры воспламенения, так распространяется горение. В аэровзвесях много воздуха и мало твердой фазы; твердая фаза – является источником тепла, воздух основной поглотитель этого тепла и является адиабатической характеристикой. Кондуктивный механизм распространения горения (теплопроводный), продукты горения нагревают воздух, и воздух нагревает частицу до температуры воспламенения, так распространяется горение. В аэровзвесях много воздуха и мало твердой фазы; твердая фаза – является источником тепла, воздух основной поглотитель этого тепла и является адиабатической характеристикой. Скорость распространения горения должна зависеть от размеров частиц в существенной мере; частицы, горящие в газовой фазе, горят по закону Средневского: время горения пропорционально квадрату диаметра частиц t=k·d2

Слайд 15


Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №15
Описание слайда:

Слайд 16


Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №16
Описание слайда:

Слайд 17


Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №17
Описание слайда:

Слайд 18


Теория горения горючих дисперсных материалов   Лекция 7 по теории горения и взрыва для гр. ДБЖ-09, слайд №18
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию