🗊Презентация Нейронные сети

Нажмите для полного просмотра!
Нейронные сети, слайд №1Нейронные сети, слайд №2Нейронные сети, слайд №3Нейронные сети, слайд №4Нейронные сети, слайд №5Нейронные сети, слайд №6Нейронные сети, слайд №7Нейронные сети, слайд №8Нейронные сети, слайд №9Нейронные сети, слайд №10Нейронные сети, слайд №11Нейронные сети, слайд №12Нейронные сети, слайд №13Нейронные сети, слайд №14Нейронные сети, слайд №15Нейронные сети, слайд №16Нейронные сети, слайд №17Нейронные сети, слайд №18Нейронные сети, слайд №19Нейронные сети, слайд №20Нейронные сети, слайд №21Нейронные сети, слайд №22Нейронные сети, слайд №23Нейронные сети, слайд №24Нейронные сети, слайд №25Нейронные сети, слайд №26Нейронные сети, слайд №27Нейронные сети, слайд №28Нейронные сети, слайд №29Нейронные сети, слайд №30Нейронные сети, слайд №31Нейронные сети, слайд №32Нейронные сети, слайд №33

Содержание

Вы можете ознакомиться и скачать презентацию на тему Нейронные сети. Доклад-сообщение содержит 33 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Нейронные сети
нейронная сеть — сеть представляет из себя совокупность нейронов, соединенных друг с другом определенным образом.
Описание слайда:
Нейронные сети нейронная сеть — сеть представляет из себя совокупность нейронов, соединенных друг с другом определенным образом.

Слайд 2





Нейрон
Нейрон представляет из себя элемент, который вычисляет выходной сигнал (по определенному правилу) из совокупности входных сигналов. То есть основная последовательность действий одного нейрона такая:
Прием сигналов от предыдущих элементов сети
Комбинирование входных сигналов
Вычисление выходного сигнала
Передача выходного сигнала следующим элементам нейронной сети
Описание слайда:
Нейрон Нейрон представляет из себя элемент, который вычисляет выходной сигнал (по определенному правилу) из совокупности входных сигналов. То есть основная последовательность действий одного нейрона такая: Прием сигналов от предыдущих элементов сети Комбинирование входных сигналов Вычисление выходного сигнала Передача выходного сигнала следующим элементам нейронной сети

Слайд 3





Связь нейронов
Описание слайда:
Связь нейронов

Слайд 4





Связь нейронов
В этой формуле:
netj - это результат комбинирования всех входных сигналов для нейрона (комбинированный ввод нейрона)
N — количество элементов, передающих свои выходные сигналы на вход сигнала  j.
wij — вес связи, соединяющей нейрон i с нейроном j. 
Суммируя все взвешенные входные сигналы, мы получаем комбинированный ввод элемента сети.
Описание слайда:
Связь нейронов В этой формуле: netj - это результат комбинирования всех входных сигналов для нейрона (комбинированный ввод нейрона) N — количество элементов, передающих свои выходные сигналы на вход сигнала j. wij — вес связи, соединяющей нейрон i с нейроном j. Суммируя все взвешенные входные сигналы, мы получаем комбинированный ввод элемента сети.

Слайд 5





W – весовая матрица
Чаще всего структура связей между нейронами представляется в виде матрицы W , которую называют весовой матрицей. Элемент матрицы , как и в формуле, определяет вес связи, идущей от элемента i к элементу j.
Описание слайда:
W – весовая матрица Чаще всего структура связей между нейронами представляется в виде матрицы W , которую называют весовой матрицей. Элемент матрицы , как и в формуле, определяет вес связи, идущей от элемента i к элементу j.

Слайд 6





Задание 1
Напишите весовую матрицу для предложенных графов
Описание слайда:
Задание 1 Напишите весовую матрицу для предложенных графов

Слайд 7





Задание 1
Напишите весовую матрицу для предложенных графов
Описание слайда:
Задание 1 Напишите весовую матрицу для предложенных графов

Слайд 8





Задание 1
Напишите весовую матрицу для предложенных графов
Описание слайда:
Задание 1 Напишите весовую матрицу для предложенных графов

Слайд 9





Задание 1
Напишите весовую матрицу для предложенных графов
Описание слайда:
Задание 1 Напишите весовую матрицу для предложенных графов

Слайд 10





Задание 2
Восстановите граф, зная матрицу весов
Описание слайда:
Задание 2 Восстановите граф, зная матрицу весов

Слайд 11





Задание 2
Восстановите граф, зная матрицу весов
Описание слайда:
Задание 2 Восстановите граф, зная матрицу весов

Слайд 12





Задание 2
Восстановите граф, зная матрицу весов
Описание слайда:
Задание 2 Восстановите граф, зная матрицу весов

Слайд 13





Задание 2
Восстановите граф, зная матрицу весов
Описание слайда:
Задание 2 Восстановите граф, зная матрицу весов

Слайд 14





Функция активности элемента
(активационная функция нейрона)
Для каждого элемента сети имеется определенное правило, в соответствии с которым из значения комбинированного ввода элемента вычисляется его выходное значение. Это  правило называется функцией активности. А само выходное значение называется активностью нейрона. В роли функций активности могут выступать абсолютно любые математические функции, приведу в качестве примера несколько из наиболее часто использующихся:
пороговая функция — если значение комбинированного ввода ниже определенного значения (порога), то активность равна нулю, если выше — единице.
логистическая функция.
Описание слайда:
Функция активности элемента (активационная функция нейрона) Для каждого элемента сети имеется определенное правило, в соответствии с которым из значения комбинированного ввода элемента вычисляется его выходное значение. Это  правило называется функцией активности. А само выходное значение называется активностью нейрона. В роли функций активности могут выступать абсолютно любые математические функции, приведу в качестве примера несколько из наиболее часто использующихся: пороговая функция — если значение комбинированного ввода ниже определенного значения (порога), то активность равна нулю, если выше — единице. логистическая функция.

Слайд 15





Пример
При помощи нейронной сети вычислить отношение XOR. То есть на вход мы будем подавать разные варианты сигналов, а на выходе должны получить результат операции XOR для поданных на вход значений
Описание слайда:
Пример При помощи нейронной сети вычислить отношение XOR. То есть на вход мы будем подавать разные варианты сигналов, а на выходе должны получить результат операции XOR для поданных на вход значений

Слайд 16





Пример
Элементы 1 и 2 являются входными, а элемент 7 — выходным. Нейроны 5 и 6 называются скрытыми, поскольку они не связаны с внешней средой. Таким образом, мы получили три слоя — входной, скрытый и выходной. Элементы 3 и 4 называют элементами смещения. Их выходной сигнал (активность) всегда равен 1. Для вычисления комбинированного ввода в этой сети мы будем использовать правило суммирования взвешенных связей, а в качестве функции активности будет выступать пороговая функция. Если комбинированный ввод элемента меньше 0, то активность равна 0, если ввод больше 0, то активность — 1.
Давайте подадим на вход нейрона 1 — единицу, а на вход нейрона 2 — ноль. В этом случае на выходе мы должны получить 1 (0 XOR 1 = 1). Рассчитаем выходное значение вручную для демонстрации работы сети.
Описание слайда:
Пример Элементы 1 и 2 являются входными, а элемент 7 — выходным. Нейроны 5 и 6 называются скрытыми, поскольку они не связаны с внешней средой. Таким образом, мы получили три слоя — входной, скрытый и выходной. Элементы 3 и 4 называют элементами смещения. Их выходной сигнал (активность) всегда равен 1. Для вычисления комбинированного ввода в этой сети мы будем использовать правило суммирования взвешенных связей, а в качестве функции активности будет выступать пороговая функция. Если комбинированный ввод элемента меньше 0, то активность равна 0, если ввод больше 0, то активность — 1. Давайте подадим на вход нейрона 1 — единицу, а на вход нейрона 2 — ноль. В этом случае на выходе мы должны получить 1 (0 XOR 1 = 1). Рассчитаем выходное значение вручную для демонстрации работы сети.

Слайд 17





Пример
Описание слайда:
Пример

Слайд 18





Задание 3
Для предложенной ранее сети, рассчитывающей значение операции XOR для остальных возможных активаций.
Описание слайда:
Задание 3 Для предложенной ранее сети, рассчитывающей значение операции XOR для остальных возможных активаций.

Слайд 19





Особенность задания 3
В данном случае все значения весовых коэффициентов нам были известны заранее, но главной особенностью нейронных сетей является то, что они могут сами корректировать значения веса всех связей в процессе обучения сети.
Описание слайда:
Особенность задания 3 В данном случае все значения весовых коэффициентов нам были известны заранее, но главной особенностью нейронных сетей является то, что они могут сами корректировать значения веса всех связей в процессе обучения сети.

Слайд 20





Задание 3.1
Применение сигмоидельной функции
Описание слайда:
Задание 3.1 Применение сигмоидельной функции

Слайд 21





Задание 3.2
Описание слайда:
Задание 3.2

Слайд 22





Обучение нейронной сети
Цель обучения: корректировка весовых коэффициентов связей сети.
Одним из самых типичных способов является управляемое обучение. 
Для его проведения нам необходимо иметь набор входных данных, а также соответствующие им выходные данные.
Описание слайда:
Обучение нейронной сети Цель обучения: корректировка весовых коэффициентов связей сети. Одним из самых типичных способов является управляемое обучение. Для его проведения нам необходимо иметь набор входных данных, а также соответствующие им выходные данные.

Слайд 23





Обучение нейронной сети
Мы подаем на вход сети данные, после чего сеть вычисляет выходное значение. Мы сравниваем это значение с имеющимся у нас (напоминаю, что для обучения используется готовый набор входных данных, для которых выходной сигнал известен) и в соответствии с разностью между этими значениями корректируем весовые коэффициенты нейронной сети. И эта операция повторяется по кругу много раз. В итоге мы получаем обученную сеть с новыми значениями весовых коэффициентов.
Описание слайда:
Обучение нейронной сети Мы подаем на вход сети данные, после чего сеть вычисляет выходное значение. Мы сравниваем это значение с имеющимся у нас (напоминаю, что для обучения используется готовый набор входных данных, для которых выходной сигнал известен) и в соответствии с разностью между этими значениями корректируем весовые коэффициенты нейронной сети. И эта операция повторяется по кругу много раз. В итоге мы получаем обученную сеть с новыми значениями весовых коэффициентов.

Слайд 24





Правило корректировки весов
Дельта правило (правило Видроу-Хоффа)
Описание слайда:
Правило корректировки весов Дельта правило (правило Видроу-Хоффа)

Слайд 25





Правило корректировки весов
Дельта правило (правило Видроу-Хоффа)
Корректировка внутренних весов
Описание слайда:
Правило корректировки весов Дельта правило (правило Видроу-Хоффа) Корректировка внутренних весов

Слайд 26





Алгоритм обратного распространения ошибок
Описание слайда:
Алгоритм обратного распространения ошибок

Слайд 27





Алгоритм обратного распространения ошибок
Пример
Описание слайда:
Алгоритм обратного распространения ошибок Пример

Слайд 28





Алгоритм обратного распространения ошибок
Пример
Описание слайда:
Алгоритм обратного распространения ошибок Пример

Слайд 29





Рассчитываем корректировки
Описание слайда:
Рассчитываем корректировки

Слайд 30





Пересчитываем веса
И, наконец-то, рассчитываем величину, на которую необходимо изменить значения весовых коэффициентов. Например, величина корректировки для связи между элементами 0 и 2 равна произведению величины сигнала, приходящего в элементу 2 от элемента 0, ошибки элемента 2 и нормы обучения (все по дельта-правилу, которое мы обсудили в начале статьи):
Описание слайда:
Пересчитываем веса И, наконец-то, рассчитываем величину, на которую необходимо изменить значения весовых коэффициентов. Например, величина корректировки для связи между элементами 0 и 2 равна произведению величины сигнала, приходящего в элементу 2 от элемента 0, ошибки элемента 2 и нормы обучения (все по дельта-правилу, которое мы обсудили в начале статьи):

Слайд 31





Пересчитываем веса
Описание слайда:
Пересчитываем веса

Слайд 32





Алгоритм обратного распространения ошибок
Пример
На этом обратный проход по сети закончен, цель достигнута Именно так и протекает процесс обучения по алгоритму обратного распространения ошибок. Мы рассмотрели этот процесс для одного набора данных, а чтобы получить полностью обученную сеть таких наборов должно быть, конечно же, намного больше, но алгоритм при этом остается неизменным, просто повторяется по кругу много раз для разных данных
Описание слайда:
Алгоритм обратного распространения ошибок Пример На этом обратный проход по сети закончен, цель достигнута Именно так и протекает процесс обучения по алгоритму обратного распространения ошибок. Мы рассмотрели этот процесс для одного набора данных, а чтобы получить полностью обученную сеть таких наборов должно быть, конечно же, намного больше, но алгоритм при этом остается неизменным, просто повторяется по кругу много раз для разных данных

Слайд 33





Задание 4
Применить алгоритм обратного распространения ошибок.
Описание слайда:
Задание 4 Применить алгоритм обратного распространения ошибок.



Похожие презентации
Mypresentation.ru
Загрузить презентацию