🗊Презентация Programming paradigms

Нажмите для полного просмотра!
Programming paradigms, слайд №1Programming paradigms, слайд №2Programming paradigms, слайд №3Programming paradigms, слайд №4Programming paradigms, слайд №5Programming paradigms, слайд №6Programming paradigms, слайд №7Programming paradigms, слайд №8Programming paradigms, слайд №9Programming paradigms, слайд №10Programming paradigms, слайд №11Programming paradigms, слайд №12Programming paradigms, слайд №13Programming paradigms, слайд №14Programming paradigms, слайд №15Programming paradigms, слайд №16Programming paradigms, слайд №17Programming paradigms, слайд №18Programming paradigms, слайд №19Programming paradigms, слайд №20Programming paradigms, слайд №21Programming paradigms, слайд №22Programming paradigms, слайд №23Programming paradigms, слайд №24Programming paradigms, слайд №25Programming paradigms, слайд №26Programming paradigms, слайд №27Programming paradigms, слайд №28Programming paradigms, слайд №29Programming paradigms, слайд №30

Вы можете ознакомиться и скачать презентацию на тему Programming paradigms. Доклад-сообщение содержит 30 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Programming Paradigms
Procedural
Functional 
Logic
Object-Oriented
Описание слайда:
Programming Paradigms Procedural Functional Logic Object-Oriented

Слайд 2





Specifying the WHAT
Describe the Inputs
Specific values
Properties
Describe the Outputs (as above)
Describe the Relationships Between I x O
As a possibly infinite table
Equations and other predicates between input and output expressions
For a given input, output may not be unique
Описание слайда:
Specifying the WHAT Describe the Inputs Specific values Properties Describe the Outputs (as above) Describe the Relationships Between I x O As a possibly infinite table Equations and other predicates between input and output expressions For a given input, output may not be unique

Слайд 3





Specifying the HOW
Describe the Inputs
Specific values
Properties
Describe HOW the Outputs are produced
Models of existing computers
Program State
Control Flow
A Few Abstractions
Block Structure
Recursion via a Stack
Описание слайда:
Specifying the HOW Describe the Inputs Specific values Properties Describe HOW the Outputs are produced Models of existing computers Program State Control Flow A Few Abstractions Block Structure Recursion via a Stack

Слайд 4





Procedural programming
Describes the details of   HOW  the results are to be obtained, in terms of the underlying machine model.
Describes computation in terms of 
Statements that change a program state
Explicit control flow
Synonyms
Imperative programming
Operational
Fortran, C, …
Abstractions of typical machines
Control Flow Encapsulation
Control  Structures
Procedures
No return values
Functions
Return one or more values
Recursion via stack
Описание слайда:
Procedural programming Describes the details of HOW the results are to be obtained, in terms of the underlying machine model. Describes computation in terms of Statements that change a program state Explicit control flow Synonyms Imperative programming Operational Fortran, C, … Abstractions of typical machines Control Flow Encapsulation Control Structures Procedures No return values Functions Return one or more values Recursion via stack

Слайд 5





Procedural Programming: State
Program State
Collection of Variables and their values
Contents of variables change
Expressions
Not expected to change Program State
Assignment Statements
Other Statements
Side Effects
Описание слайда:
Procedural Programming: State Program State Collection of Variables and their values Contents of variables change Expressions Not expected to change Program State Assignment Statements Other Statements Side Effects

Слайд 6





C, C++, C#, Java
Abstractions of typical machines
Control Flow Encapsulation
Control  Structures
Procedures
No return values
Functions
Return one or more values
Recursion via stack
Better Data Type support
Описание слайда:
C, C++, C#, Java Abstractions of typical machines Control Flow Encapsulation Control Structures Procedures No return values Functions Return one or more values Recursion via stack Better Data Type support

Слайд 7





Illustrative Example
Expression (to be computed) :  a + b + c
Recipe for Computation
Account for machine limitations
Intermediate Location
T := a + b;      T := T + c;
Accumulator Machine
Load a;  Add b;  Add c
Stack Machine
Push a;  Push b;   Add;  Push c;  Add
Описание слайда:
Illustrative Example Expression (to be computed) : a + b + c Recipe for Computation Account for machine limitations Intermediate Location T := a + b; T := T + c; Accumulator Machine Load a; Add b; Add c Stack Machine Push a; Push b; Add; Push c; Add

Слайд 8





Declarative Programming
Specifies WHAT  is to be computed abstractly
Expresses the logic of a computation without describing its control flow
Declarative languages include
logic programming, and 
functional programming.
often defined as any style of programming that is not imperative.
Описание слайда:
Declarative Programming Specifies WHAT is to be computed abstractly Expresses the logic of a computation without describing its control flow Declarative languages include logic programming, and functional programming. often defined as any style of programming that is not imperative.

Слайд 9





Imperative vs Non-Imperative
Functional/Logic style clearly separates WHAT  aspects of a program (programmers’ responsibility) from the HOW aspects (implementation decisions).
An Imperative program contains both the specification and the implementation details, inseparably inter-twined.
Описание слайда:
Imperative vs Non-Imperative Functional/Logic style clearly separates WHAT aspects of a program (programmers’ responsibility) from the HOW aspects (implementation decisions). An Imperative program contains both the specification and the implementation details, inseparably inter-twined.

Слайд 10





Procedural vs Functional 
Program:  a sequence of instructions for a von Neumann m/c.
Computation by instruction execution.
Iteration.
Modifiable or updatable variables..
Описание слайда:
Procedural vs Functional Program: a sequence of instructions for a von Neumann m/c. Computation by instruction execution. Iteration. Modifiable or updatable variables..

Слайд 11





Functional Style : Illustration
Definition:  Equations  
		sumto(0)  = 0
		sumto(n)  =  n + sumto(n-1)
Computation: Substitution and Replacement
	sumto(2)	=  2 + sumto (2-1)
		=  2 + sumto(1)
		=  2 + 1 + sumto(1-1) = 2 + 1 + sumto(0)
		=  2 + 1 + 0 = …
		=  3
Описание слайда:
Functional Style : Illustration Definition: Equations sumto(0) = 0 sumto(n) = n + sumto(n-1) Computation: Substitution and Replacement sumto(2) = 2 + sumto (2-1) = 2 + sumto(1) = 2 + 1 + sumto(1-1) = 2 + 1 + sumto(0) = 2 + 1 + 0 = … = 3

Слайд 12





Paradigm vs Language
Imperative Style
Описание слайда:
Paradigm vs Language Imperative Style

Слайд 13





Bridging the Gap
Imperative is not always faster, or more memory efficient than functional.
E.g., tail recursive programs can be automatically translated into equivalent while-loops.
         func  xyz(n : int,  r : int) : int;
               	if  n = 0
				then   r
               		else   xyz(n-1, n+r)
			fi
         endfunc
Описание слайда:
Bridging the Gap Imperative is not always faster, or more memory efficient than functional. E.g., tail recursive programs can be automatically translated into equivalent while-loops. func xyz(n : int, r : int) : int; if n = 0 then r else xyz(n-1, n+r) fi endfunc

Слайд 14





Analogy:  Styles vs Formalisms
Iteration
Tail-Recursion
General Recursion
Описание слайда:
Analogy: Styles vs Formalisms Iteration Tail-Recursion General Recursion

Слайд 15





Logic Programming Paradigm
edge(a,b).
edge(a,c).
edge(c,a).
path(X,X).
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z),  path(Z,Y).
Описание слайда:
Logic Programming Paradigm edge(a,b). edge(a,c). edge(c,a). path(X,X). path(X,Y) :- edge(X,Y). path(X,Y) :- edge(X,Z), path(Z,Y).

Слайд 16





Logic Programming 
A logic program defines a set of relations.
This “knowledge” can be used  in various ways by the interpreter to solve different “queries”.
In contrast, the programs in other languages
Make explicit HOW the “declarative knowledge” is used to solve the query.
Описание слайда:
Logic Programming A logic program defines a set of relations. This “knowledge” can be used in various ways by the interpreter to solve different “queries”. In contrast, the programs in other languages Make explicit HOW the “declarative knowledge” is used to solve the query.

Слайд 17





 Append in Prolog
append([], L, L).
append([ H | T ], X, [ H | Y ]) :-
     append(T, X, Y).
True statements about append relation.
Uses pattern matching.
“[]” and “|” stand for empty list and cons operation.
Описание слайда:
Append in Prolog append([], L, L). append([ H | T ], X, [ H | Y ]) :- append(T, X, Y). True statements about append relation. Uses pattern matching. “[]” and “|” stand for empty list and cons operation.

Слайд 18





Different Kinds of Queries
 Verification
append:  list x list x list 
append([1], [2,3], [1,2,3]).
Concatenation
append: list x list -> list 
append([1], [2,3], R).
Описание слайда:
Different Kinds of Queries Verification append: list x list x list append([1], [2,3], [1,2,3]). Concatenation append: list x list -> list append([1], [2,3], R).

Слайд 19





More  Queries
Constraint solving
append:  list x list -> list 
 append( R, [2,3], [1,2,3]).
append:  list  ->  list x list
 append(A, B, [1,2,3]).
Generation
append:   ->  list x list  x list
append(X, Y, Z).
Описание слайда:
More Queries Constraint solving append: list x list -> list append( R, [2,3], [1,2,3]). append: list -> list x list append(A, B, [1,2,3]). Generation append: -> list x list x list append(X, Y, Z).

Слайд 20





Object-Oriented Style
Programming with  Abstract Data Types
  ADTs  specify/describe  behaviors.
Basic Program Unit:  Class
  Implementation of an ADT.
  Abstraction enforced  by encapsulation..
Basic Run-time Unit:  Object
 Instance of a class.
 Has an associated  state.
Описание слайда:
Object-Oriented Style Programming with Abstract Data Types ADTs specify/describe behaviors. Basic Program Unit: Class Implementation of an ADT. Abstraction enforced by encapsulation.. Basic Run-time Unit: Object Instance of a class. Has an associated state.

Слайд 21





Procedural vs Object-Oriented
Emphasis on procedural abstraction.
Top-down design;  Step-wise refinement.
Suited for programming in the small.
Описание слайда:
Procedural vs Object-Oriented Emphasis on procedural abstraction. Top-down design; Step-wise refinement. Suited for programming in the small.

Слайд 22





Integrating Heterogeneous Data
In  C, Pascal, etc., use
    Union Type / Switch Statement
    Variant Record Type / Case Statement
In  C++, Java, Eiffel, etc., use
    Abstract Classes / Virtual Functions
    Interfaces and Classes / Dynamic Binding
Описание слайда:
Integrating Heterogeneous Data In C, Pascal, etc., use Union Type / Switch Statement Variant Record Type / Case Statement In C++, Java, Eiffel, etc., use Abstract Classes / Virtual Functions Interfaces and Classes / Dynamic Binding

Слайд 23





Comparison : Figures example
Data
Square
side
Circle
radius
Operation (area)
Square 
side * side
Circle
PI * radius * radius
Описание слайда:
Comparison : Figures example Data Square side Circle radius Operation (area) Square side * side Circle PI * radius * radius

Слайд 24





Adding a new operation
Data
        ...
Operation (area)
Operation (perimeter)
Square
4 * side
Circle
2 * PI * radius
Описание слайда:
Adding a new operation Data ... Operation (area) Operation (perimeter) Square 4 * side Circle 2 * PI * radius

Слайд 25





Adding a new data representation
Описание слайда:
Adding a new data representation

Слайд 26





Procedural vs Object-Oriented
New operations cause additive changes in procedural style, but require modifications to all existing “class modules” in object-oriented style.
New data representations cause additive changes in object-oriented style, but require modifications to all “procedure modules”.
Описание слайда:
Procedural vs Object-Oriented New operations cause additive changes in procedural style, but require modifications to all existing “class modules” in object-oriented style. New data representations cause additive changes in object-oriented style, but require modifications to all “procedure modules”.

Слайд 27





Object-Oriented Concepts
Data Abstraction   (specifies behavior)
Encapsulation (controls visibility of names)
Polymorphism (accommodates various                  				implementations)
Inheritance (facilitates code reuse)
Modularity (relates to unit of compilation)
Описание слайда:
Object-Oriented Concepts Data Abstraction (specifies behavior) Encapsulation (controls visibility of names) Polymorphism (accommodates various implementations) Inheritance (facilitates code reuse) Modularity (relates to unit of compilation)

Слайд 28





Example :  Role of interface in decoupling
Client
Determine the number of elements in a collection.
Suppliers
Collections : Vector, String, List, Set, Array, etc
Procedural Style
A client is responsible for invoking appropriate supplier function for determining the size.
OOP Style
	Suppliers are responsible for conforming to the standard interface required for exporting the size functionality to a client.
Описание слайда:
Example : Role of interface in decoupling Client Determine the number of elements in a collection. Suppliers Collections : Vector, String, List, Set, Array, etc Procedural Style A client is responsible for invoking appropriate supplier function for determining the size. OOP Style Suppliers are responsible for conforming to the standard interface required for exporting the size functionality to a client.

Слайд 29





Client in Scheme
(define (size C) 
		(cond 
			( (vector?  C)  (vector-length C) )
			( (pair?  C)    (length C) )
			( (string?  C)  (string-length C) )
			(  else         “size not supported”) )))
(size    (vector 1 2 (+ 1 2)))
(size    ‘(one “two” 3))
Описание слайда:
Client in Scheme (define (size C) (cond ( (vector? C) (vector-length C) ) ( (pair? C) (length C) ) ( (string? C) (string-length C) ) ( else “size not supported”) ))) (size (vector 1 2 (+ 1 2))) (size ‘(one “two” 3))

Слайд 30





Suppliers and Client in Java
Interface Collection  {int size(); }
class myVector extends Vector 
	implements  Collection {
	}
class myString extends String 
	implements  Collection {
	public int size() { return length();}
	}
class myArray  implements Collection {
   	int[]  array;
   	public int size() {return array.length;}
	}
Collection c = new  myVector();  c.size();
Описание слайда:
Suppliers and Client in Java Interface Collection {int size(); } class myVector extends Vector implements Collection { } class myString extends String implements Collection { public int size() { return length();} } class myArray implements Collection { int[] array; public int size() {return array.length;} } Collection c = new myVector(); c.size();



Похожие презентации
Mypresentation.ru
Загрузить презентацию