🗊Презентация IDP for Machine Learning

Нажмите для полного просмотра!
IDP for Machine Learning, слайд №1IDP for Machine Learning, слайд №2IDP for Machine Learning, слайд №3IDP for Machine Learning, слайд №4IDP for Machine Learning, слайд №5IDP for Machine Learning, слайд №6IDP for Machine Learning, слайд №7IDP for Machine Learning, слайд №8IDP for Machine Learning, слайд №9IDP for Machine Learning, слайд №10IDP for Machine Learning, слайд №11IDP for Machine Learning, слайд №12IDP for Machine Learning, слайд №13IDP for Machine Learning, слайд №14IDP for Machine Learning, слайд №15IDP for Machine Learning, слайд №16IDP for Machine Learning, слайд №17IDP for Machine Learning, слайд №18IDP for Machine Learning, слайд №19IDP for Machine Learning, слайд №20IDP for Machine Learning, слайд №21IDP for Machine Learning, слайд №22IDP for Machine Learning, слайд №23IDP for Machine Learning, слайд №24IDP for Machine Learning, слайд №25IDP for Machine Learning, слайд №26IDP for Machine Learning, слайд №27

Вы можете ознакомиться и скачать презентацию на тему IDP for Machine Learning. Доклад-сообщение содержит 27 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


IDP for Machine Learning, слайд №1
Описание слайда:

Слайд 2





Machine Learning: Your Path to Deeper Insight
Driving increasing innovation and competitive advantage across industries
strategy provides the foundation for success using AI
Описание слайда:
Machine Learning: Your Path to Deeper Insight Driving increasing innovation and competitive advantage across industries strategy provides the foundation for success using AI

Слайд 3





Motivation
Описание слайда:
Motivation

Слайд 4





Intel® Distribution for Python*
Advancing Python performance closer to native speeds
Описание слайда:
Intel® Distribution for Python* Advancing Python performance closer to native speeds

Слайд 5





Performance Gain from MKL (Compare to “vanilla” SciPy)
Описание слайда:
Performance Gain from MKL (Compare to “vanilla” SciPy)

Слайд 6





Out-of-the-box Performance with Intel® Distribution for Python*
Mature AVX2 instructions based product

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017
Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz
Описание слайда:
Out-of-the-box Performance with Intel® Distribution for Python* Mature AVX2 instructions based product Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017 Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz

Слайд 7





Out-of-the-box Performance with Intel® Distribution for Python*
New AVX512 instructions based product

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017
Hardware: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz
Описание слайда:
Out-of-the-box Performance with Intel® Distribution for Python* New AVX512 instructions based product Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017 Hardware: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Слайд 8





WORKSHOP:
BASIC functions
Описание слайда:
WORKSHOP: BASIC functions

Слайд 9





Examples of Basic Functions
NumPy, SciPy
Matrix multiplication
Random number generation
Vector Math
Linear algebra decompositions
Not so basic functions
SciKit-learn
Linear regression
NOTE: Only Python 2.7 and 3.5 are supported for now
Описание слайда:
Examples of Basic Functions NumPy, SciPy Matrix multiplication Random number generation Vector Math Linear algebra decompositions Not so basic functions SciKit-learn Linear regression NOTE: Only Python 2.7 and 3.5 are supported for now

Слайд 10





Intel Python Landscape
Описание слайда:
Intel Python Landscape

Слайд 11





Scikit-Learn* optimizations with Intel® MKL
Speedups of Scikit-Learn* Benchmarks (2017 Update 1)
Описание слайда:
Scikit-Learn* optimizations with Intel® MKL Speedups of Scikit-Learn* Benchmarks (2017 Update 1)

Слайд 12





More Scikit-Learn* optimizations with Intel® DAAL
Speedups of Scikit-Learn* Benchmarks (2017 Update 2)
Accelerated key Machine Learning algorithms with Intel® DAAL
Distances, K-means, Linear & Ridge Regression, PCA
Up to 160x speedup on top of MKL initial optimizations
Описание слайда:
More Scikit-Learn* optimizations with Intel® DAAL Speedups of Scikit-Learn* Benchmarks (2017 Update 2) Accelerated key Machine Learning algorithms with Intel® DAAL Distances, K-means, Linear & Ridge Regression, PCA Up to 160x speedup on top of MKL initial optimizations

Слайд 13





Intel® DAAL: Heterogeneous Analytics
Targets both data centers (Intel® Xeon® and Intel® Xeon Phi™) and edge-devices (Intel® Atom™)
Perform analysis close to data source (sensor/client/server) to optimize response latency, decrease network bandwidth utilization, and maximize security
Offload data to server/cluster for complex and large-scale analytics
Описание слайда:
Intel® DAAL: Heterogeneous Analytics Targets both data centers (Intel® Xeon® and Intel® Xeon Phi™) and edge-devices (Intel® Atom™) Perform analysis close to data source (sensor/client/server) to optimize response latency, decrease network bandwidth utilization, and maximize security Offload data to server/cluster for complex and large-scale analytics

Слайд 14





Performance Example : Read And Compute
SVM Classification with RBF kernel
Training dataset: CSV file (PCA-preprocessed MNIST, 40 principal components) n=42000, p=40
Testing dataset: CSV file (PCA-preprocessed MNIST, 40 principal components) n=28000, p=40
System Info: Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz, 504GB, 2x24 cores, HT=on, OS RH7.2 x86_64, Intel® Distribution for Python* 2017 Update 1 (Python* 3.5)
Описание слайда:
Performance Example : Read And Compute SVM Classification with RBF kernel Training dataset: CSV file (PCA-preprocessed MNIST, 40 principal components) n=42000, p=40 Testing dataset: CSV file (PCA-preprocessed MNIST, 40 principal components) n=28000, p=40 System Info: Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz, 504GB, 2x24 cores, HT=on, OS RH7.2 x86_64, Intel® Distribution for Python* 2017 Update 1 (Python* 3.5)

Слайд 15





WORKSHOP:
PyDAAL
Описание слайда:
WORKSHOP: PyDAAL

Слайд 16





pyDAAL Getting Started
https://github.com/daaltces/pydaal-getting-started
DAAL4PY: Tech Preview
https://software.intel.com/en-us/articles/daal4py-overview-a-high-level-python-api-to-the-intel-data-analytics-acceleration-library
Описание слайда:
pyDAAL Getting Started https://github.com/daaltces/pydaal-getting-started DAAL4PY: Tech Preview https://software.intel.com/en-us/articles/daal4py-overview-a-high-level-python-api-to-the-intel-data-analytics-acceleration-library

Слайд 17





Intel® TBB: parallelism orchestration in Python ecosystem
Software components are built from smaller ones
If each component is threaded there can be too much!
Intel TBB dynamically balances thread loads and effectively manages oversubscription
Описание слайда:
Intel® TBB: parallelism orchestration in Python ecosystem Software components are built from smaller ones If each component is threaded there can be too much! Intel TBB dynamically balances thread loads and effectively manages oversubscription

Слайд 18





Profiling Python* code with Intel® VTune™ Amplifier
Right tool for high performance application profiling at all levels

Function-level and line-level hotspot analysis, down to disassembly
Call stack analysis
Low overhead
Mixed-language, multi-threaded application analysis
Описание слайда:
Profiling Python* code with Intel® VTune™ Amplifier Right tool for high performance application profiling at all levels Function-level and line-level hotspot analysis, down to disassembly Call stack analysis Low overhead Mixed-language, multi-threaded application analysis

Слайд 19





Installing Intel® Distribution for Python* 2017
Stand-alone installer and anaconda.org/intel
OR
Описание слайда:
Installing Intel® Distribution for Python* 2017 Stand-alone installer and anaconda.org/intel OR

Слайд 20





Intel® Distribution for Python
Описание слайда:
Intel® Distribution for Python

Слайд 21





backup
Описание слайда:
backup

Слайд 22





Collaborative Filtering
Processes users’ past behavior, their activities and ratings
Predicts, what user might want to buy depending on his/her preferences
Описание слайда:
Collaborative Filtering Processes users’ past behavior, their activities and ratings Predicts, what user might want to buy depending on his/her preferences

Слайд 23





Training: Profiling pure python*
Описание слайда:
Training: Profiling pure python*

Слайд 24





Training: Profiling pure Python*
Описание слайда:
Training: Profiling pure Python*

Слайд 25





Training: Python + Numpy (MKL)
Much faster!
The most compute-intensive part takes ~5%  of all the execution time
Описание слайда:
Training: Python + Numpy (MKL) Much faster! The most compute-intensive part takes ~5% of all the execution time

Слайд 26





Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. 
For more complete information about compiler optimizations, see our Optimization Notice at https://software.intel.com/en-us/articles/optimization-notice#opt-en.
Copyright © 2017, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
Описание слайда:
Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information about compiler optimizations, see our Optimization Notice at https://software.intel.com/en-us/articles/optimization-notice#opt-en. Copyright © 2017, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Слайд 27


IDP for Machine Learning, слайд №27
Описание слайда:



Теги IDP for Machine Learning
Похожие презентации
Mypresentation.ru
Загрузить презентацию