🗊Презентация Integer Programming Example #1 - Combinatorics

Нажмите для полного просмотра!
Integer Programming Example #1 - Combinatorics, слайд №1Integer Programming Example #1 - Combinatorics, слайд №2Integer Programming Example #1 - Combinatorics, слайд №3

Вы можете ознакомиться и скачать презентацию на тему Integer Programming Example #1 - Combinatorics. Доклад-сообщение содержит 3 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Integer Programming Example #1 - Combinatorics
Описание слайда:
Integer Programming Example #1 - Combinatorics

Слайд 2





Districting Problem
Описание слайда:
Districting Problem

Слайд 3





Districting Problem Homework
The MPL code my formulation is on Moodle.
Download it and solve it in MPL using CPLEX
How many districts are built? How many have majorities?
First question:
I had to add a set of constraints to get the number of majority districts right. Find those constraints and explain why I had to add them.
Second question:
The optimization, as written, doesn't minimize the total number of districts. So, 6 districts with 4 majorities is better than 9 districts with 5 majorities.
Modify the MPL formulation to limit the total number of districts. Find the minimum number of districts that can be built (MPL will be infeasible if you set the limit too low). 
Vary this limit to find the best ratio of majority districts to total districts.
Описание слайда:
Districting Problem Homework The MPL code my formulation is on Moodle. Download it and solve it in MPL using CPLEX How many districts are built? How many have majorities? First question: I had to add a set of constraints to get the number of majority districts right. Find those constraints and explain why I had to add them. Second question: The optimization, as written, doesn't minimize the total number of districts. So, 6 districts with 4 majorities is better than 9 districts with 5 majorities. Modify the MPL formulation to limit the total number of districts. Find the minimum number of districts that can be built (MPL will be infeasible if you set the limit too low). Vary this limit to find the best ratio of majority districts to total districts.



Похожие презентации
Mypresentation.ru
Загрузить презентацию