🗊Презентация Machine-Level Programming I: Basics

Нажмите для полного просмотра!
Machine-Level Programming I: Basics, слайд №1Machine-Level Programming I: Basics, слайд №2Machine-Level Programming I: Basics, слайд №3Machine-Level Programming I: Basics, слайд №4Machine-Level Programming I: Basics, слайд №5Machine-Level Programming I: Basics, слайд №6Machine-Level Programming I: Basics, слайд №7Machine-Level Programming I: Basics, слайд №8Machine-Level Programming I: Basics, слайд №9Machine-Level Programming I: Basics, слайд №10Machine-Level Programming I: Basics, слайд №11Machine-Level Programming I: Basics, слайд №12Machine-Level Programming I: Basics, слайд №13Machine-Level Programming I: Basics, слайд №14Machine-Level Programming I: Basics, слайд №15Machine-Level Programming I: Basics, слайд №16Machine-Level Programming I: Basics, слайд №17Machine-Level Programming I: Basics, слайд №18Machine-Level Programming I: Basics, слайд №19Machine-Level Programming I: Basics, слайд №20Machine-Level Programming I: Basics, слайд №21Machine-Level Programming I: Basics, слайд №22Machine-Level Programming I: Basics, слайд №23Machine-Level Programming I: Basics, слайд №24Machine-Level Programming I: Basics, слайд №25Machine-Level Programming I: Basics, слайд №26Machine-Level Programming I: Basics, слайд №27Machine-Level Programming I: Basics, слайд №28Machine-Level Programming I: Basics, слайд №29Machine-Level Programming I: Basics, слайд №30Machine-Level Programming I: Basics, слайд №31Machine-Level Programming I: Basics, слайд №32Machine-Level Programming I: Basics, слайд №33Machine-Level Programming I: Basics, слайд №34Machine-Level Programming I: Basics, слайд №35Machine-Level Programming I: Basics, слайд №36Machine-Level Programming I: Basics, слайд №37Machine-Level Programming I: Basics, слайд №38Machine-Level Programming I: Basics, слайд №39Machine-Level Programming I: Basics, слайд №40Machine-Level Programming I: Basics, слайд №41Machine-Level Programming I: Basics, слайд №42Machine-Level Programming I: Basics, слайд №43Machine-Level Programming I: Basics, слайд №44Machine-Level Programming I: Basics, слайд №45Machine-Level Programming I: Basics, слайд №46Machine-Level Programming I: Basics, слайд №47Machine-Level Programming I: Basics, слайд №48Machine-Level Programming I: Basics, слайд №49Machine-Level Programming I: Basics, слайд №50Machine-Level Programming I: Basics, слайд №51Machine-Level Programming I: Basics, слайд №52Machine-Level Programming I: Basics, слайд №53Machine-Level Programming I: Basics, слайд №54Machine-Level Programming I: Basics, слайд №55

Содержание

Вы можете ознакомиться и скачать презентацию на тему Machine-Level Programming I: Basics. Доклад-сообщение содержит 55 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Machine-Level Programming I: Basics

15-213/18-213: Introduction to Computer Systems 
5th Lecture, January 30, 2018
Instructors: 
Franz Franchetti and Seth C. Goldstein
Описание слайда:
Machine-Level Programming I: Basics 15-213/18-213: Introduction to Computer Systems 5th Lecture, January 30, 2018 Instructors: Franz Franchetti and Seth C. Goldstein

Слайд 2





Office Hours
Not too well attended (yet?)
Ask your TAs about how it was last 
year…
You can choose from coffee, tea, 
and hot chocolate
Here’s where my office is: HH A312
The time: Tues. 4pm-5pm
Описание слайда:
Office Hours Not too well attended (yet?) Ask your TAs about how it was last year… You can choose from coffee, tea, and hot chocolate Here’s where my office is: HH A312 The time: Tues. 4pm-5pm

Слайд 3





Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code
Описание слайда:
Today: Machine Programming I: Basics History of Intel processors and architectures Assembly Basics: Registers, operands, move Arithmetic & logical operations C, assembly, machine code

Слайд 4





Intel x86 Processors
Dominate laptop/desktop/server market

Evolutionary design
Backwards compatible up until 8086, introduced in 1978
Added more features as time goes on
Now 3 volumes, about 5,000 pages of documentation
Complex instruction set computer (CISC)
Many different instructions with many different formats
But, only small subset encountered with Linux programs
Hard to match performance of Reduced Instruction Set Computers (RISC)
But, Intel has done just that!
In terms of speed.  Less so for low power.
Описание слайда:
Intel x86 Processors Dominate laptop/desktop/server market Evolutionary design Backwards compatible up until 8086, introduced in 1978 Added more features as time goes on Now 3 volumes, about 5,000 pages of documentation Complex instruction set computer (CISC) Many different instructions with many different formats But, only small subset encountered with Linux programs Hard to match performance of Reduced Instruction Set Computers (RISC) But, Intel has done just that! In terms of speed. Less so for low power.

Слайд 5





Intel x86 Evolution: Milestones
	Name	Date	Transistors	MHz
8086	1978	29K	5-10
First 16-bit Intel processor.  Basis for IBM PC & DOS
1MB address space
386	1985	275K	16-33	
First 32 bit Intel processor , referred to as IA32
Added “flat addressing”, capable of running Unix
Pentium 4E	2004	125M	2800-3800
First 64-bit Intel x86 processor, referred to as x86-64
Core 2	2006	291M	1060-3333
First multi-core Intel processor
Core i7	2008	731M	1600-4400
Four cores (our shark machines)
Описание слайда:
Intel x86 Evolution: Milestones Name Date Transistors MHz 8086 1978 29K 5-10 First 16-bit Intel processor. Basis for IBM PC & DOS 1MB address space 386 1985 275K 16-33 First 32 bit Intel processor , referred to as IA32 Added “flat addressing”, capable of running Unix Pentium 4E 2004 125M 2800-3800 First 64-bit Intel x86 processor, referred to as x86-64 Core 2 2006 291M 1060-3333 First multi-core Intel processor Core i7 2008 731M 1600-4400 Four cores (our shark machines)

Слайд 6





Intel x86 Processors, cont.
Machine Evolution
386	1985	0.3M	
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6.5M
Pentium III	1999	8.2M
Pentium 4	2000	42M
Core 2 Duo	2006	291M
Core i7	2008	731M
Core i7 Skylake	2015	1.9B
Added Features
Instructions to support multimedia operations
Instructions to enable more efficient conditional operations
Transition from 32 bits to 64 bits
More cores
Описание слайда:
Intel x86 Processors, cont. Machine Evolution 386 1985 0.3M Pentium 1993 3.1M Pentium/MMX 1997 4.5M PentiumPro 1995 6.5M Pentium III 1999 8.2M Pentium 4 2000 42M Core 2 Duo 2006 291M Core i7 2008 731M Core i7 Skylake 2015 1.9B Added Features Instructions to support multimedia operations Instructions to enable more efficient conditional operations Transition from 32 bits to 64 bits More cores

Слайд 7





Intel x86 Processors, cont.
Past Generations
1st Pentium Pro	1995	600 nm
1st Pentium III	1999	250 nm
1st Pentium 4	2000	180 nm
1st Core 2 Duo	2006	  65 nm
Recent Generations
Nehalem	2008	  45 nm	
Sandy Bridge	2011	  32 nm
Ivy Bridge	2012	  22 nm
Haswell	2013	  22 nm
Broadwell	2014	  14 nm
Skylake	2015	  14 nm
Kaby Lake	2016	  14 nm
Coffee Lake	2017?	  14 nm
Cannonlake	2018?	  10 nm
Описание слайда:
Intel x86 Processors, cont. Past Generations 1st Pentium Pro 1995 600 nm 1st Pentium III 1999 250 nm 1st Pentium 4 2000 180 nm 1st Core 2 Duo 2006 65 nm Recent Generations Nehalem 2008 45 nm Sandy Bridge 2011 32 nm Ivy Bridge 2012 22 nm Haswell 2013 22 nm Broadwell 2014 14 nm Skylake 2015 14 nm Kaby Lake 2016 14 nm Coffee Lake 2017? 14 nm Cannonlake 2018? 10 nm

Слайд 8





2018 State of the Art: Skylake (Core i7 v6)
Mobile Model: Core i7
2.6-2.9 GHz
45 W
Desktop Model: Core i7
Integrated graphics
2.8-4.0 GHz
35-91 W
Server Model: Xeon
Integrated graphics
Multi-socket enabled
2-3.7 GHz
25-80 W
Описание слайда:
2018 State of the Art: Skylake (Core i7 v6) Mobile Model: Core i7 2.6-2.9 GHz 45 W Desktop Model: Core i7 Integrated graphics 2.8-4.0 GHz 35-91 W Server Model: Xeon Integrated graphics Multi-socket enabled 2-3.7 GHz 25-80 W

Слайд 9





x86 Clones: Advanced Micro Devices (AMD)
Historically
AMD has followed just behind Intel
A little bit slower, a lot cheaper
Then
Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies
Built Opteron: tough competitor to Pentium 4
Developed x86-64, their own extension to 64 bits
 Recent Years
Intel got its act together
Leads the world in semiconductor technology
AMD has fallen behind
Relies on external semiconductor manufacturer
Описание слайда:
x86 Clones: Advanced Micro Devices (AMD) Historically AMD has followed just behind Intel A little bit slower, a lot cheaper Then Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies Built Opteron: tough competitor to Pentium 4 Developed x86-64, their own extension to 64 bits Recent Years Intel got its act together Leads the world in semiconductor technology AMD has fallen behind Relies on external semiconductor manufacturer

Слайд 10





Intel’s 64-Bit History
2001: Intel Attempts Radical Shift from IA32 to IA64
Totally different architecture (Itanium)
Executes IA32 code only as legacy
Performance disappointing
2003: AMD Steps in with Evolutionary Solution
x86-64 (now called “AMD64”)
Intel Felt Obligated to Focus on IA64
Hard to admit mistake or that AMD is better
2004: Intel Announces EM64T extension to IA32
Extended Memory 64-bit Technology
Almost identical to x86-64!
All but low-end x86 processors support x86-64
But, lots of code still runs in 32-bit mode
Описание слайда:
Intel’s 64-Bit History 2001: Intel Attempts Radical Shift from IA32 to IA64 Totally different architecture (Itanium) Executes IA32 code only as legacy Performance disappointing 2003: AMD Steps in with Evolutionary Solution x86-64 (now called “AMD64”) Intel Felt Obligated to Focus on IA64 Hard to admit mistake or that AMD is better 2004: Intel Announces EM64T extension to IA32 Extended Memory 64-bit Technology Almost identical to x86-64! All but low-end x86 processors support x86-64 But, lots of code still runs in 32-bit mode

Слайд 11





Our Coverage
IA32
The traditional x86
For 15/18-213: RIP, Summer 2015

x86-64
The standard
shark> gcc hello.c
shark> gcc –m64 hello.c

Presentation
Book covers x86-64
Web aside on IA32
We will only cover x86-64
Описание слайда:
Our Coverage IA32 The traditional x86 For 15/18-213: RIP, Summer 2015 x86-64 The standard shark> gcc hello.c shark> gcc –m64 hello.c Presentation Book covers x86-64 Web aside on IA32 We will only cover x86-64

Слайд 12





Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code
Описание слайда:
Today: Machine Programming I: Basics History of Intel processors and architectures Assembly Basics: Registers, operands, move Arithmetic & logical operations C, assembly, machine code

Слайд 13





Levels of Abstraction
Описание слайда:
Levels of Abstraction

Слайд 14





Definitions
Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand for writing assembly/machine code. 
Examples:  instruction set specification, registers
Microarchitecture: Implementation of the architecture
Examples: cache sizes and core frequency
Code Forms:
Machine Code: The byte-level programs that a processor executes
Assembly Code: A text representation of machine code
Example ISAs: 
Intel: x86, IA32, Itanium, x86-64
ARM: Used in almost all mobile phones
RISC V: New open-source ISA
Описание слайда:
Definitions Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand for writing assembly/machine code. Examples: instruction set specification, registers Microarchitecture: Implementation of the architecture Examples: cache sizes and core frequency Code Forms: Machine Code: The byte-level programs that a processor executes Assembly Code: A text representation of machine code Example ISAs: Intel: x86, IA32, Itanium, x86-64 ARM: Used in almost all mobile phones RISC V: New open-source ISA

Слайд 15





Assembly/Machine Code View
Programmer-Visible State
PC: Program counter
Address of next instruction
Called “RIP” (x86-64)
Register file
Heavily used program data
Condition codes
Store status information about most recent arithmetic or logical operation
Used for conditional branching
Описание слайда:
Assembly/Machine Code View Programmer-Visible State PC: Program counter Address of next instruction Called “RIP” (x86-64) Register file Heavily used program data Condition codes Store status information about most recent arithmetic or logical operation Used for conditional branching

Слайд 16





Assembly Characteristics: Data Types
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

(SIMD vector data types of 8, 16, 32 or 64 bytes)

Code: Byte sequences encoding series of instructions

No aggregate types such as arrays or structures
Just contiguously allocated bytes in memory
Описание слайда:
Assembly Characteristics: Data Types “Integer” data of 1, 2, 4, or 8 bytes Data values Addresses (untyped pointers) Floating point data of 4, 8, or 10 bytes (SIMD vector data types of 8, 16, 32 or 64 bytes) Code: Byte sequences encoding series of instructions No aggregate types such as arrays or structures Just contiguously allocated bytes in memory

Слайд 17





x86-64 Integer Registers
Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
Not part of memory (or cache)
Описание слайда:
x86-64 Integer Registers Can reference low-order 4 bytes (also low-order 1 & 2 bytes) Not part of memory (or cache)

Слайд 18





Some History: IA32 Registers
Описание слайда:
Some History: IA32 Registers

Слайд 19





Assembly Characteristics: Operations
Transfer data between memory and register
Load data from memory into register
Store register data into memory

Perform arithmetic function on register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branches
Описание слайда:
Assembly Characteristics: Operations Transfer data between memory and register Load data from memory into register Store register data into memory Perform arithmetic function on register or memory data Transfer control Unconditional jumps to/from procedures Conditional branches Indirect branches

Слайд 20





Moving Data
Moving Data
movq Source, Dest
Operand Types
Immediate: Constant integer data
Example: $0x400, $-533
Like C constant, but prefixed with ‘$’
Encoded with 1, 2, or 4 bytes
Register: One of 16 integer registers
Example: %rax, %r13
But %rsp reserved for special use
Others have special uses for particular instructions
Memory: 8 consecutive bytes of memory at address given by register
Simplest example: (%rax)
Various other “addressing modes”
Описание слайда:
Moving Data Moving Data movq Source, Dest Operand Types Immediate: Constant integer data Example: $0x400, $-533 Like C constant, but prefixed with ‘$’ Encoded with 1, 2, or 4 bytes Register: One of 16 integer registers Example: %rax, %r13 But %rsp reserved for special use Others have special uses for particular instructions Memory: 8 consecutive bytes of memory at address given by register Simplest example: (%rax) Various other “addressing modes”

Слайд 21





movq Operand Combinations
Cannot do memory-memory transfer with a single instruction
Описание слайда:
movq Operand Combinations Cannot do memory-memory transfer with a single instruction

Слайд 22





Simple Memory Addressing Modes
Normal	(R)	Mem[Reg[R]]
Register R specifies memory address
Aha! Pointer dereferencing in C

movq (%rcx),%rax
Displacement	D(R)	Mem[Reg[R]+D]
Register R specifies start of memory region
Constant displacement D specifies offset

movq 8(%rbp),%rdx
Описание слайда:
Simple Memory Addressing Modes Normal (R) Mem[Reg[R]] Register R specifies memory address Aha! Pointer dereferencing in C movq (%rcx),%rax Displacement D(R) Mem[Reg[R]+D] Register R specifies start of memory region Constant displacement D specifies offset movq 8(%rbp),%rdx

Слайд 23





Example of Simple Addressing Modes
Описание слайда:
Example of Simple Addressing Modes

Слайд 24





Example of Simple Addressing Modes
Описание слайда:
Example of Simple Addressing Modes

Слайд 25





Understanding Swap()
Описание слайда:
Understanding Swap()

Слайд 26





Understanding Swap()
Описание слайда:
Understanding Swap()

Слайд 27





Understanding Swap()
Описание слайда:
Understanding Swap()

Слайд 28





Understanding Swap()
Описание слайда:
Understanding Swap()

Слайд 29





Understanding Swap()
Описание слайда:
Understanding Swap()

Слайд 30





Understanding Swap()
Описание слайда:
Understanding Swap()

Слайд 31





Simple Memory Addressing Modes
Normal	(R)	Mem[Reg[R]]
Register R specifies memory address
Aha! Pointer dereferencing in C

movq (%rcx),%rax
Displacement	D(R)	Mem[Reg[R]+D]
Register R specifies start of memory region
Constant displacement D specifies offset

movq 8(%rbp),%rdx
Описание слайда:
Simple Memory Addressing Modes Normal (R) Mem[Reg[R]] Register R specifies memory address Aha! Pointer dereferencing in C movq (%rcx),%rax Displacement D(R) Mem[Reg[R]+D] Register R specifies start of memory region Constant displacement D specifies offset movq 8(%rbp),%rdx

Слайд 32





Complete Memory Addressing Modes
Most General Form
		D(Rb,Ri,S)	Mem[Reg[Rb]+S*Reg[Ri]+ D]
D: 	Constant “displacement” 1, 2, or 4 bytes
Rb: 	Base register: Any of 16 integer registers
Ri:	Index register: Any, except for %rsp
S: 	Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases
		(Rb,Ri)	Mem[Reg[Rb]+Reg[Ri]]
		D(Rb,Ri)	Mem[Reg[Rb]+Reg[Ri]+D]
		(Rb,Ri,S)	Mem[Reg[Rb]+S*Reg[Ri]]
Описание слайда:
Complete Memory Addressing Modes Most General Form D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D] D: Constant “displacement” 1, 2, or 4 bytes Rb: Base register: Any of 16 integer registers Ri: Index register: Any, except for %rsp S: Scale: 1, 2, 4, or 8 (why these numbers?) Special Cases (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Слайд 33





Address Computation Examples
Описание слайда:
Address Computation Examples

Слайд 34





Address Computation Examples
Описание слайда:
Address Computation Examples

Слайд 35





Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code
Описание слайда:
Today: Machine Programming I: Basics History of Intel processors and architectures Assembly Basics: Registers, operands, move Arithmetic & logical operations C, assembly, machine code

Слайд 36





Address Computation Instruction
leaq Src, Dst
Src is address mode expression
Set Dst to address denoted by expression
Uses
Computing addresses without a memory reference
E.g., translation of p = &x[i];
Computing arithmetic expressions of the form x + k*y
k = 1, 2, 4, or 8
Example
Описание слайда:
Address Computation Instruction leaq Src, Dst Src is address mode expression Set Dst to address denoted by expression Uses Computing addresses without a memory reference E.g., translation of p = &x[i]; Computing arithmetic expressions of the form x + k*y k = 1, 2, 4, or 8 Example

Слайд 37





Some Arithmetic Operations
Two Operand Instructions:
Format	Computation
addq	Src,Dest	Dest = Dest + Src
subq	Src,Dest	Dest = Dest  Src
imulq	Src,Dest	Dest = Dest * Src
salq	Src,Dest	Dest = Dest << Src	Also called shlq
sarq	Src,Dest	Dest = Dest >> Src	Arithmetic
shrq	Src,Dest	Dest = Dest >> Src	Logical
xorq	Src,Dest	Dest = Dest ^ Src
andq	Src,Dest	Dest = Dest & Src
orq	Src,Dest	Dest = Dest | Src
Watch out for argument order!  Src,Dest
(Warning: Intel docs use “op Dest,Src”)
No distinction between signed and unsigned int (why?)
Описание слайда:
Some Arithmetic Operations Two Operand Instructions: Format Computation addq Src,Dest Dest = Dest + Src subq Src,Dest Dest = Dest  Src imulq Src,Dest Dest = Dest * Src salq Src,Dest Dest = Dest << Src Also called shlq sarq Src,Dest Dest = Dest >> Src Arithmetic shrq Src,Dest Dest = Dest >> Src Logical xorq Src,Dest Dest = Dest ^ Src andq Src,Dest Dest = Dest & Src orq Src,Dest Dest = Dest | Src Watch out for argument order! Src,Dest (Warning: Intel docs use “op Dest,Src”) No distinction between signed and unsigned int (why?)

Слайд 38





Quiz Time!
	halblustig: German, literal translation: “semi-funny”
	but often means “not funny at all” in Austrian German
Check out: quiz: day 5: Machine Basics
https://canvas.cmu.edu/courses/3822
Описание слайда:
Quiz Time! halblustig: German, literal translation: “semi-funny” but often means “not funny at all” in Austrian German Check out: quiz: day 5: Machine Basics https://canvas.cmu.edu/courses/3822

Слайд 39





Some Arithmetic Operations
One Operand Instructions
incq	Dest	Dest = Dest + 1
decq	Dest	Dest = Dest  1
negq	Dest	Dest =  Dest
notq	Dest	Dest = ~Dest
See book for more instructions
Описание слайда:
Some Arithmetic Operations One Operand Instructions incq Dest Dest = Dest + 1 decq Dest Dest = Dest  1 negq Dest Dest =  Dest notq Dest Dest = ~Dest See book for more instructions

Слайд 40





Arithmetic Expression Example
Interesting Instructions
leaq: address computation
salq: shift
imulq: multiplication
But, only used once
Описание слайда:
Arithmetic Expression Example Interesting Instructions leaq: address computation salq: shift imulq: multiplication But, only used once

Слайд 41





Understanding Arithmetic Expression Example
Описание слайда:
Understanding Arithmetic Expression Example

Слайд 42





Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code
Описание слайда:
Today: Machine Programming I: Basics History of Intel processors and architectures Assembly Basics: Registers, operands, move Arithmetic & logical operations C, assembly, machine code

Слайд 43





Turning C into Object Code
Code in files  p1.c p2.c
Compile with command:  gcc –Og p1.c p2.c -o p
Use basic optimizations (-Og) [New to recent versions of GCC]
Put resulting binary in file p
Описание слайда:
Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc –Og p1.c p2.c -o p Use basic optimizations (-Og) [New to recent versions of GCC] Put resulting binary in file p

Слайд 44





Compiling Into Assembly
C Code (sum.c)
Описание слайда:
Compiling Into Assembly C Code (sum.c)

Слайд 45





What it really looks like
	.globl	sumstore
	.type	sumstore, @function
sumstore:
.LFB35:
	.cfi_startproc
	pushq	%rbx
	.cfi_def_cfa_offset 16
	.cfi_offset 3, -16
	movq	%rdx, %rbx
	call	plus
	movq	%rax, (%rbx)
	popq	%rbx
	.cfi_def_cfa_offset 8
	ret
	.cfi_endproc
.LFE35:
	.size	sumstore, .-sumstore
Описание слайда:
What it really looks like .globl sumstore .type sumstore, @function sumstore: .LFB35: .cfi_startproc pushq %rbx .cfi_def_cfa_offset 16 .cfi_offset 3, -16 movq %rdx, %rbx call plus movq %rax, (%rbx) popq %rbx .cfi_def_cfa_offset 8 ret .cfi_endproc .LFE35: .size sumstore, .-sumstore

Слайд 46





What it really looks like
	.globl	sumstore
	.type	sumstore, @function
sumstore:
.LFB35:
	.cfi_startproc
	pushq	%rbx
	.cfi_def_cfa_offset 16
	.cfi_offset 3, -16
	movq	%rdx, %rbx
	call	plus
	movq	%rax, (%rbx)
	popq	%rbx
	.cfi_def_cfa_offset 8
	ret
	.cfi_endproc
.LFE35:
	.size	sumstore, .-sumstore
Описание слайда:
What it really looks like .globl sumstore .type sumstore, @function sumstore: .LFB35: .cfi_startproc pushq %rbx .cfi_def_cfa_offset 16 .cfi_offset 3, -16 movq %rdx, %rbx call plus movq %rax, (%rbx) popq %rbx .cfi_def_cfa_offset 8 ret .cfi_endproc .LFE35: .size sumstore, .-sumstore

Слайд 47





Assembly Characteristics: Data Types
“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

(SIMD vector data types of 8, 16, 32 or 64 bytes)

Code: Byte sequences encoding series of instructions

No aggregate types such as arrays or structures
Just contiguously allocated bytes in memory
Описание слайда:
Assembly Characteristics: Data Types “Integer” data of 1, 2, 4, or 8 bytes Data values Addresses (untyped pointers) Floating point data of 4, 8, or 10 bytes (SIMD vector data types of 8, 16, 32 or 64 bytes) Code: Byte sequences encoding series of instructions No aggregate types such as arrays or structures Just contiguously allocated bytes in memory

Слайд 48





Assembly Characteristics: Operations
Transfer data between memory and register
Load data from memory into register
Store register data into memory

Perform arithmetic function on register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branch
Описание слайда:
Assembly Characteristics: Operations Transfer data between memory and register Load data from memory into register Store register data into memory Perform arithmetic function on register or memory data Transfer control Unconditional jumps to/from procedures Conditional branches Indirect branch

Слайд 49





Object Code
Assembler
Translates .s into .o
Binary encoding of each instruction
Nearly-complete image of executable code
Missing linkages between code in different files
Linker
Resolves references between files
Combines with static run-time libraries
E.g., code for malloc, printf
Some libraries are dynamically linked
Linking occurs when program begins execution
Описание слайда:
Object Code Assembler Translates .s into .o Binary encoding of each instruction Nearly-complete image of executable code Missing linkages between code in different files Linker Resolves references between files Combines with static run-time libraries E.g., code for malloc, printf Some libraries are dynamically linked Linking occurs when program begins execution

Слайд 50





Machine Instruction Example
C Code
Store value t where designated by dest
Assembly
Move 8-byte value to memory
Quad words in x86-64 parlance
Operands:
t:	Register	%rax
dest:	Register	%rbx
*dest: 	Memory	M[%rbx]
Object Code
3-byte instruction
Stored at address 0x40059e
Описание слайда:
Machine Instruction Example C Code Store value t where designated by dest Assembly Move 8-byte value to memory Quad words in x86-64 parlance Operands: t: Register %rax dest: Register %rbx *dest: Memory M[%rbx] Object Code 3-byte instruction Stored at address 0x40059e

Слайд 51





Disassembling Object Code
Disassembler
objdump –d sum
Useful tool for examining object code
Analyzes bit pattern of series of instructions
Produces approximate rendition of assembly code
Can be run on either a.out (complete executable) or .o file
Описание слайда:
Disassembling Object Code Disassembler objdump –d sum Useful tool for examining object code Analyzes bit pattern of series of instructions Produces approximate rendition of assembly code Can be run on either a.out (complete executable) or .o file

Слайд 52





Alternate Disassembly
Within gdb Debugger
Disassemble procedure
gdb sum
disassemble sumstore
Описание слайда:
Alternate Disassembly Within gdb Debugger Disassemble procedure gdb sum disassemble sumstore

Слайд 53





Alternate Disassembly
Within gdb Debugger
Disassemble procedure
gdb sum
disassemble sumstore
Examine the 14 bytes starting at sumstore
x/14xb sumstore
Описание слайда:
Alternate Disassembly Within gdb Debugger Disassemble procedure gdb sum disassemble sumstore Examine the 14 bytes starting at sumstore x/14xb sumstore

Слайд 54





What Can be Disassembled?
Anything that can be interpreted as executable code
Disassembler examines bytes and reconstructs assembly source
Описание слайда:
What Can be Disassembled? Anything that can be interpreted as executable code Disassembler examines bytes and reconstructs assembly source

Слайд 55





Machine Programming I: Summary
History of Intel processors and architectures
Evolutionary design leads to many quirks and artifacts
C, assembly, machine code
New forms of visible state: program counter, registers, ...
Compiler must transform statements, expressions, procedures into low-level instruction sequences
Assembly Basics: Registers, operands, move
The x86-64 move instructions cover wide range of data movement forms
Arithmetic
C compiler will figure out different instruction combinations to carry out computation
Описание слайда:
Machine Programming I: Summary History of Intel processors and architectures Evolutionary design leads to many quirks and artifacts C, assembly, machine code New forms of visible state: program counter, registers, ... Compiler must transform statements, expressions, procedures into low-level instruction sequences Assembly Basics: Registers, operands, move The x86-64 move instructions cover wide range of data movement forms Arithmetic C compiler will figure out different instruction combinations to carry out computation



Похожие презентации
Mypresentation.ru
Загрузить презентацию