🗊Презентация Информационная безопасность. Криптографические средства защиты данных. Шифрование

Нажмите для полного просмотра!
Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №1Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №2Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №3Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №4Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №5Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №6Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №7Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №8Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №9Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №10Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №11Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №12Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №13Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №14Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №15Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №16Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №17Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №18Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №19Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №20Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №21Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №22Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №23Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №24Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №25Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №26Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №27Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №28Информационная безопасность. Криптографические средства защиты данных. Шифрование, слайд №29

Содержание

Вы можете ознакомиться и скачать презентацию на тему Информационная безопасность. Криптографические средства защиты данных. Шифрование. Доклад-сообщение содержит 29 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Информационная безопасность
Криптографические средства защиты данных
Описание слайда:
Информационная безопасность Криптографические средства защиты данных

Слайд 2





Шифрование
Шифрование – использование криптографических сервисов безопасности.
Процедура шифрования – преобразование открытого текста сообщения в закрытый. 
Современные средства шифрования используют известные алгоритмы шифрования. Для обеспечения конфиденциальности преобразованного сообщения используются специальные параметры преобразования – ключи.
Описание слайда:
Шифрование Шифрование – использование криптографических сервисов безопасности. Процедура шифрования – преобразование открытого текста сообщения в закрытый. Современные средства шифрования используют известные алгоритмы шифрования. Для обеспечения конфиденциальности преобразованного сообщения используются специальные параметры преобразования – ключи.

Слайд 3





Шифрование
Криптографические преобразования используются при реализации следующих сервисов безопасности:
Собственно шифрование (обеспечение конфиденциальности данных);
Контроль целостности;
Аутентификация.
Описание слайда:
Шифрование Криптографические преобразования используются при реализации следующих сервисов безопасности: Собственно шифрование (обеспечение конфиденциальности данных); Контроль целостности; Аутентификация.

Слайд 4





Системы криптографической защиты информации
Задача средств криптографической защиты информации — преобразование информационных объектов с помощью некоторого обратимого математического алгоритма.
Процесс шифрования использует в качестве входных параметров объект – открытый текст и объект – ключ, а результат преобразования — объект – зашифрованный текст. При дешифровании выполняется обратный процесс. 
Криптографическому методу в ИС соответствует некоторый специальный алгоритм. При выполнении данного алгоритма используется уникальное числовое значение – ключ.
Знание ключа позволяет выполнить обратное преобразование и получить открытое сообщения.
Стойкость криптографической системы определяется используемыми алгоритмами и степенью секретности ключа.
Описание слайда:
Системы криптографической защиты информации Задача средств криптографической защиты информации — преобразование информационных объектов с помощью некоторого обратимого математического алгоритма. Процесс шифрования использует в качестве входных параметров объект – открытый текст и объект – ключ, а результат преобразования — объект – зашифрованный текст. При дешифровании выполняется обратный процесс. Криптографическому методу в ИС соответствует некоторый специальный алгоритм. При выполнении данного алгоритма используется уникальное числовое значение – ключ. Знание ключа позволяет выполнить обратное преобразование и получить открытое сообщения. Стойкость криптографической системы определяется используемыми алгоритмами и степенью секретности ключа.

Слайд 5





Криптографические средства защиты данных
Для обеспечения защиты информации в распределенных информационных системах активно применяются криптографические средства защиты информации.
Сущность криптографических методов заключается в следующем:
Описание слайда:
Криптографические средства защиты данных Для обеспечения защиты информации в распределенных информационных системах активно применяются криптографические средства защиты информации. Сущность криптографических методов заключается в следующем:

Слайд 6





Использование средств криптографической защиты для предотвращения угроз ИБ
Обеспечение конфиденциальности данных. Использование криптографических алгоритмов позволяет предотвратить утечку информации. Отсутствие ключа у «злоумышленника» не позволяет раскрыть зашифрованную информацию;
Обеспечение целостности данных. Использование алгоритмов несимметричного шифрования и хэширования делает возможным создание способа контроля целостности информации. 
Электронная цифровая подпись. Позволяет решить задачу отказа от информации.
Обеспечение аутентификации. Криптографические методы используются в различных схемах аутентификации в распределенных системах (Kerberos, S/Key и др.).
Описание слайда:
Использование средств криптографической защиты для предотвращения угроз ИБ Обеспечение конфиденциальности данных. Использование криптографических алгоритмов позволяет предотвратить утечку информации. Отсутствие ключа у «злоумышленника» не позволяет раскрыть зашифрованную информацию; Обеспечение целостности данных. Использование алгоритмов несимметричного шифрования и хэширования делает возможным создание способа контроля целостности информации. Электронная цифровая подпись. Позволяет решить задачу отказа от информации. Обеспечение аутентификации. Криптографические методы используются в различных схемах аутентификации в распределенных системах (Kerberos, S/Key и др.).

Слайд 7





Требования к системам криптографической защиты
Криптографические требования
Эффективность применения злоумышленником определяется средней долей дешифрованной информации, являющейся средним значением отношения количества дешифрованной информации к общему количеству шифрованной информации, подлежащей дешифрованию, и трудоемкостью дешифрования единицы информации, измеряемой Q числом элементарных опробований. 
Под элементарными опробованиями понимается операция над двумя n-разрядными двоичными числами. При реализации алгоритма дешифрования может быть использован гипотетический вычислитель, объем памяти которого не превышает M двоичных разрядов. За одно обращение к памяти может быть записано по некоторому адресу или извлечено не более n бит информации. Обращение к памяти по трудоемкости приравнивается к элементарному опробованию. 
За единицу информации принимается общий объем информации обработанной на одном средстве криптографической защиты в течении единицы времени. Атака злоумышленника является успешной, если объем полученной открытой информации больше некоторого заданного объема V.
Описание слайда:
Требования к системам криптографической защиты Криптографические требования Эффективность применения злоумышленником определяется средней долей дешифрованной информации, являющейся средним значением отношения количества дешифрованной информации к общему количеству шифрованной информации, подлежащей дешифрованию, и трудоемкостью дешифрования единицы информации, измеряемой Q числом элементарных опробований. Под элементарными опробованиями понимается операция над двумя n-разрядными двоичными числами. При реализации алгоритма дешифрования может быть использован гипотетический вычислитель, объем памяти которого не превышает M двоичных разрядов. За одно обращение к памяти может быть записано по некоторому адресу или извлечено не более n бит информации. Обращение к памяти по трудоемкости приравнивается к элементарному опробованию. За единицу информации принимается общий объем информации обработанной на одном средстве криптографической защиты в течении единицы времени. Атака злоумышленника является успешной, если объем полученной открытой информации больше некоторого заданного объема V.

Слайд 8





Требования к системам криптографической защиты
Требования надежности. 
Средства защиты должны обеспечивать заданный уровень надежности применяемых криптографических преобразований информации, определяемый значением допустимой вероятности неисправностей или сбоев, приводящих к получению злоумышленником дополнительной информации о криптографических преобразованиях. 
Регламентные работы (ремонт и сервисное обслуживание) средств криптографической защиты не должно приводить к ухудшению свойств средств в части параметров надежности.
Описание слайда:
Требования к системам криптографической защиты Требования надежности. Средства защиты должны обеспечивать заданный уровень надежности применяемых криптографических преобразований информации, определяемый значением допустимой вероятности неисправностей или сбоев, приводящих к получению злоумышленником дополнительной информации о криптографических преобразованиях. Регламентные работы (ремонт и сервисное обслуживание) средств криптографической защиты не должно приводить к ухудшению свойств средств в части параметров надежности.

Слайд 9





Требования к системам криптографической защиты
Требование по защите от несанкционированного доступа для средств криптографической информации в составе информационных систем. 
В автоматизированных информационных системах, для которых реализованы программные или аппаратные средства криптографических защиты информации, при хранении и обработке информации должны быть предусмотрены следующие основные механизмы защиты:
идентификация и аутентификация пользователей и субъектов доступа;
управление доступом;
обеспечения целостности;
регистрация и учет.
Описание слайда:
Требования к системам криптографической защиты Требование по защите от несанкционированного доступа для средств криптографической информации в составе информационных систем. В автоматизированных информационных системах, для которых реализованы программные или аппаратные средства криптографических защиты информации, при хранении и обработке информации должны быть предусмотрены следующие основные механизмы защиты: идентификация и аутентификация пользователей и субъектов доступа; управление доступом; обеспечения целостности; регистрация и учет.

Слайд 10





Требования к системам криптографической защиты
Требования к средствам разработки, изготовления и функционирования средств криптографической защиты информации.
Аппаратные и программные средства, на которых ведется разработка систем криптографической защиты информации, не должны содержать явных или скрытых функциональных возможностей, позволяющих:
модифицировать или изменять алгоритм работы средств защиты информации в процессе их разработки, изготовления и эксплуатации;
модифицировать или изменять информационные или управляющие потоки, связанные с функционированием средств;
осуществлять доступ посторонних лиц к ключам идентификационной и аутентификационной информации;
получать доступ к конфиденциальной информации средств криптографической защиты информации.
Описание слайда:
Требования к системам криптографической защиты Требования к средствам разработки, изготовления и функционирования средств криптографической защиты информации. Аппаратные и программные средства, на которых ведется разработка систем криптографической защиты информации, не должны содержать явных или скрытых функциональных возможностей, позволяющих: модифицировать или изменять алгоритм работы средств защиты информации в процессе их разработки, изготовления и эксплуатации; модифицировать или изменять информационные или управляющие потоки, связанные с функционированием средств; осуществлять доступ посторонних лиц к ключам идентификационной и аутентификационной информации; получать доступ к конфиденциальной информации средств криптографической защиты информации.

Слайд 11





Способы шифрования
Различают два основных способа шифрования:
Симметричное шифрование, иначе шифрование с закрытым ключом;
Ассиметричное шифрование, иначе шифрование с открытым ключом;
Описание слайда:
Способы шифрования Различают два основных способа шифрования: Симметричное шифрование, иначе шифрование с закрытым ключом; Ассиметричное шифрование, иначе шифрование с открытым ключом;

Слайд 12





Шифрование с секретным ключом
При симметричном шифровании процесс зашифровывания и расшифровывания использует некоторый секретный ключ.
При симметричном шифровании реализуются два типа алгоритмов:
Поточное шифрование (побитовое)
Блочное шифрование (при шифровании текст предварительно разбивается на блоки, как правило не менее 64 бит)
Описание слайда:
Шифрование с секретным ключом При симметричном шифровании процесс зашифровывания и расшифровывания использует некоторый секретный ключ. При симметричном шифровании реализуются два типа алгоритмов: Поточное шифрование (побитовое) Блочное шифрование (при шифровании текст предварительно разбивается на блоки, как правило не менее 64 бит)

Слайд 13





Шифрование с секретным ключом
Выделяют следующие общие принципы построения шифров:
электронная кодовая книга (режим простой замены);
сцепление блоков шифра (режим гаммирования с обратной связью);
обратная связь по шифротексту;
обратная связь по выходу (режим гаммирования).
Описание слайда:
Шифрование с секретным ключом Выделяют следующие общие принципы построения шифров: электронная кодовая книга (режим простой замены); сцепление блоков шифра (режим гаммирования с обратной связью); обратная связь по шифротексту; обратная связь по выходу (режим гаммирования).

Слайд 14





Шифрование с секретным ключом
Стандарт шифрования DES. 
Алгоритм шифрования представляет собой блочный шифр, использующий подстановки, перестановки и сложения по модулю 2, с длиной блока 64 бита и длиной ключа 56 бит. 
Подстановки и перестановки, используемые в DES фиксированы.
Описание слайда:
Шифрование с секретным ключом Стандарт шифрования DES. Алгоритм шифрования представляет собой блочный шифр, использующий подстановки, перестановки и сложения по модулю 2, с длиной блока 64 бита и длиной ключа 56 бит. Подстановки и перестановки, используемые в DES фиксированы.

Слайд 15





Алгоритм шифрования DES
Основные этапы алгоритма шифрования
К блоку входного текста применяется фиксированная перестановка IP
Для каждого цикла (всего 16) выполняется операция зашифровывания:
64 битный блок разбивается на две половины (левую x” и правую x’) по 32 бита
Правая половина x’ разбивается на 8 тетрад по 4 бита. Каждая тетрада по циклическому закону дополняется крайними битами из соседних тетрад до 6-битного слова
Полученный 48-битный блок суммируется по модулю 2 с 48 битами подключа, биты которого выбираются на каждом цикле специальным образом из 56 бит, а затем разбиваются на 8 блоков по 6 бит
Описание слайда:
Алгоритм шифрования DES Основные этапы алгоритма шифрования К блоку входного текста применяется фиксированная перестановка IP Для каждого цикла (всего 16) выполняется операция зашифровывания: 64 битный блок разбивается на две половины (левую x” и правую x’) по 32 бита Правая половина x’ разбивается на 8 тетрад по 4 бита. Каждая тетрада по циклическому закону дополняется крайними битами из соседних тетрад до 6-битного слова Полученный 48-битный блок суммируется по модулю 2 с 48 битами подключа, биты которого выбираются на каждом цикле специальным образом из 56 бит, а затем разбиваются на 8 блоков по 6 бит

Слайд 16





Алгоритм шифрования DES (продолжение)
Каждый из полученных на предыдущем шаге блоков поступает на вход функции фиксированного S-блока, которая выполняет нелинейную замену наборов 6-битных блоков тетрадами
Полученные 32 бита подвергаются фиксированной перестановке, результатом которой является полублок Fi(x’)
Компоненты правого зашифрованного полублока Fi(x’) суммируется по модулю 2 с компонентами левого полублока x” и меняются местами, т.е. блок (x”, Fi(x’)) преобразуется в блок (x”+Fi(x’),x”)
К блоку текста, полученному после всех 16 циклов, применяется обратная перестановка IP-1
Результатом является выходной зашифрованный текст
Описание слайда:
Алгоритм шифрования DES (продолжение) Каждый из полученных на предыдущем шаге блоков поступает на вход функции фиксированного S-блока, которая выполняет нелинейную замену наборов 6-битных блоков тетрадами Полученные 32 бита подвергаются фиксированной перестановке, результатом которой является полублок Fi(x’) Компоненты правого зашифрованного полублока Fi(x’) суммируется по модулю 2 с компонентами левого полублока x” и меняются местами, т.е. блок (x”, Fi(x’)) преобразуется в блок (x”+Fi(x’),x”) К блоку текста, полученному после всех 16 циклов, применяется обратная перестановка IP-1 Результатом является выходной зашифрованный текст

Слайд 17





Симметричное шифрование
В процессе шифрования и дешифрования используется один и тот же параметр – секретный ключ, известный обеим сторонам
Примеры симметричного шифрования:
ГОСТ 28147-89
DES
Blow Fish
IDEA
Достоинство симметричного шифрования
Скорость выполнения преобразований
Недостаток симметричного шифрования
Известен получателю и отправителю, что создает проблемы при распространении ключей и доказательстве подлинности сообщения
Описание слайда:
Симметричное шифрование В процессе шифрования и дешифрования используется один и тот же параметр – секретный ключ, известный обеим сторонам Примеры симметричного шифрования: ГОСТ 28147-89 DES Blow Fish IDEA Достоинство симметричного шифрования Скорость выполнения преобразований Недостаток симметричного шифрования Известен получателю и отправителю, что создает проблемы при распространении ключей и доказательстве подлинности сообщения

Слайд 18





Симметричное шифрование
Описание слайда:
Симметричное шифрование

Слайд 19





Несимметричное шифрование
В несимметричных алгоритмах шифрования ключи зашифровывания и расшифровывания всегда разные (хотя и связанные между собой). 
Ключ зашифровывания является несекретным (открытым), ключ расшифровывания – секретным.
Описание слайда:
Несимметричное шифрование В несимметричных алгоритмах шифрования ключи зашифровывания и расшифровывания всегда разные (хотя и связанные между собой). Ключ зашифровывания является несекретным (открытым), ключ расшифровывания – секретным.

Слайд 20





Несимметричное шифрование
Алгоритм шифрования RSA (предложен Р.Ривестом, Э.Шамиром и Л.Адлманом) включает в себя:
Пусть заданы два простых числа p и q и пусть n=pq, (n)=(p-1)(q-1). Пусть число e, такое что числа e и (n) взаимно простые, а d – мультипликативно обратное к нему, то есть edmod (n). Числа e и d называются открытым и закрытым показателями соответственно. Открытым ключом является пара (n,e) секретным ключом – d. Множители p и q должны сохраняться в секрете.
Таким образом безопасность системы RSA основана на трудности задачи разложения на простые множители.
Описание слайда:
Несимметричное шифрование Алгоритм шифрования RSA (предложен Р.Ривестом, Э.Шамиром и Л.Адлманом) включает в себя: Пусть заданы два простых числа p и q и пусть n=pq, (n)=(p-1)(q-1). Пусть число e, такое что числа e и (n) взаимно простые, а d – мультипликативно обратное к нему, то есть edmod (n). Числа e и d называются открытым и закрытым показателями соответственно. Открытым ключом является пара (n,e) секретным ключом – d. Множители p и q должны сохраняться в секрете. Таким образом безопасность системы RSA основана на трудности задачи разложения на простые множители.

Слайд 21





Несимметричное шифрование
Кроме алгоритма RSA часто используемыми алгоритмами несимметричного шифрования являются:
Алгоритм Эль-Гамаля (использует простое число p, образующую группы g и экспоненту y=gx(mod p) )
Алгоритм шифрования Месси-Омуры (использует простое число p, такое что p-1 имеет большой простой делитель в качестве открытого ключа, секретный ключ определяется в процессе диалога между приемником и источником)
Описание слайда:
Несимметричное шифрование Кроме алгоритма RSA часто используемыми алгоритмами несимметричного шифрования являются: Алгоритм Эль-Гамаля (использует простое число p, образующую группы g и экспоненту y=gx(mod p) ) Алгоритм шифрования Месси-Омуры (использует простое число p, такое что p-1 имеет большой простой делитель в качестве открытого ключа, секретный ключ определяется в процессе диалога между приемником и источником)

Слайд 22





Ассиметричное шифрование
В криптографических преобразованиях используется два ключа. Один из них несекретный (открытый) ключ используется для шифрования. Второй, секретный ключ для расшифровывания.
Примеры несимметричного шифрования:
RSA
Алгоритм Эль-Гамаля
Недостаток асимметричного шифрования 
 низкое быстродействие алгоритмов (из-за длины ключа и сложности преобразований)
Достоинства:
Применение асимметричных алгоритмов для решения задачи проверки подлинности сообщений, целостности и т.п.
Описание слайда:
Ассиметричное шифрование В криптографических преобразованиях используется два ключа. Один из них несекретный (открытый) ключ используется для шифрования. Второй, секретный ключ для расшифровывания. Примеры несимметричного шифрования: RSA Алгоритм Эль-Гамаля Недостаток асимметричного шифрования низкое быстродействие алгоритмов (из-за длины ключа и сложности преобразований) Достоинства: Применение асимметричных алгоритмов для решения задачи проверки подлинности сообщений, целостности и т.п.

Слайд 23





Сравнение симметричных и несимметричных алгоритмов шифрования
Преимущества симметричных алгоритмов:
Скорость выполнения криптографических преобразований
Относительная легкость внесения изменений в алгоритм шифрования
Преимущества несимметричных алгоритмов
Секретный ключ известен только получателю информации и первоначальный обмен не требует передачи секретного ключа
Применение в системах аутентификации (электронная цифровая подпись)
Описание слайда:
Сравнение симметричных и несимметричных алгоритмов шифрования Преимущества симметричных алгоритмов: Скорость выполнения криптографических преобразований Относительная легкость внесения изменений в алгоритм шифрования Преимущества несимметричных алгоритмов Секретный ключ известен только получателю информации и первоначальный обмен не требует передачи секретного ключа Применение в системах аутентификации (электронная цифровая подпись)

Слайд 24





Проверка подлинности
Криптографические методы позволяют контролировать целостность сообщений, определять подлинность источников данных, гарантировать невозможность отказа от совершенных действий
В основе криптографического контроля целостности лежат два понятия:
Хэш-функция;
Электронная цифровая подпись.
Описание слайда:
Проверка подлинности Криптографические методы позволяют контролировать целостность сообщений, определять подлинность источников данных, гарантировать невозможность отказа от совершенных действий В основе криптографического контроля целостности лежат два понятия: Хэш-функция; Электронная цифровая подпись.

Слайд 25





Проверка целостности сообщений
Контроль целостности потока сообщений помогает обнаружить их повтор, задержку, переупорядочивание или утрату. Для контроля целостности сообщений можно использовать хэш-функцию.
Хэш-функция – преобразование преобразующее строку произвольной длины в строку фиксированной длины и удовлетворяющее следующим свойствам:
Для каждого значения H(M) невозможно найти аргумент M – стойкость в смысле обращения;
Для данного аргумента M невозможно найти аргумент M’,что H(M) = H(M’) – стойкость в смысле возникновения коллизий.
Хэш-функция используется:
Для создания сжатого образа сообщения, применяемого в ЭЦП;
Для защиты пароля;
Для построения кода аутентификации сообщений.
Описание слайда:
Проверка целостности сообщений Контроль целостности потока сообщений помогает обнаружить их повтор, задержку, переупорядочивание или утрату. Для контроля целостности сообщений можно использовать хэш-функцию. Хэш-функция – преобразование преобразующее строку произвольной длины в строку фиксированной длины и удовлетворяющее следующим свойствам: Для каждого значения H(M) невозможно найти аргумент M – стойкость в смысле обращения; Для данного аргумента M невозможно найти аргумент M’,что H(M) = H(M’) – стойкость в смысле возникновения коллизий. Хэш-функция используется: Для создания сжатого образа сообщения, применяемого в ЭЦП; Для защиты пароля; Для построения кода аутентификации сообщений.

Слайд 26





Контроль подлинности 
Электронная цифровая подпись выполняет роль обычной подписи в электронных документах для подтверждения подлинности сообщений – данные присоединяются к передаваемому сообщению, подтверждая подлинность отправителя сообщения.
При разработке механизма цифровой подписи возникает три задачи:
создание подписи таким образом, чтобы ее невозможно было подделать;
возможность проверки того, что подпись действительно принадлежит указанному владельцу.
предотвращение отказа от подписи.
Описание слайда:
Контроль подлинности Электронная цифровая подпись выполняет роль обычной подписи в электронных документах для подтверждения подлинности сообщений – данные присоединяются к передаваемому сообщению, подтверждая подлинность отправителя сообщения. При разработке механизма цифровой подписи возникает три задачи: создание подписи таким образом, чтобы ее невозможно было подделать; возможность проверки того, что подпись действительно принадлежит указанному владельцу. предотвращение отказа от подписи.

Слайд 27





Алгоритм формирования электронной цифровой подписи
При формировании цифровой подписи по классической схеме отправитель:
Применяет к исходному тексту хэш-функцию;
Дополняет хэш-образ до длины, требуемой в алгоритме создания ЭЦП;
Вычисляет ЭЦП по хэш-образу с использованием секретного ключа создания подписи.
Получатель, получив подписанное сообщение, отделяет цифровую подпись от основного текста и выполняет проверку:
Применяет к тексту полученного сообщения хэш-функцию;
Дополняет хэш-образ до требуемой длины;
Проверяет соответствие хэш-образа сообщения полученной цифровой подписи с использованием открытого ключа проверки подписи.
Описание слайда:
Алгоритм формирования электронной цифровой подписи При формировании цифровой подписи по классической схеме отправитель: Применяет к исходному тексту хэш-функцию; Дополняет хэш-образ до длины, требуемой в алгоритме создания ЭЦП; Вычисляет ЭЦП по хэш-образу с использованием секретного ключа создания подписи. Получатель, получив подписанное сообщение, отделяет цифровую подпись от основного текста и выполняет проверку: Применяет к тексту полученного сообщения хэш-функцию; Дополняет хэш-образ до требуемой длины; Проверяет соответствие хэш-образа сообщения полученной цифровой подписи с использованием открытого ключа проверки подписи.

Слайд 28





Примеры алгоритмов формирования хэш-функции и ЭЦП
В качестве распространенных алгоритмов хэширования можно указать:
MD5;
SHA;
ГОСТ Р34.11-94;
Алгоритмы формирования электронной цифровой подписи:
RSA;
DSA;
ГОСТ Р34.10-94
Описание слайда:
Примеры алгоритмов формирования хэш-функции и ЭЦП В качестве распространенных алгоритмов хэширования можно указать: MD5; SHA; ГОСТ Р34.11-94; Алгоритмы формирования электронной цифровой подписи: RSA; DSA; ГОСТ Р34.10-94

Слайд 29





Выбор алгоритмов аутентификации
При выборе протоколов аутентификации, необходимо определить, какой тип аутентификации требуется – односторонняя или двусторонняя, наличие доверенной стороны и т.д.
Параметры протокола аутентификации:
Тип алгоритма (симметричный, несимметричный);
Конкретный вид алгоритма;
Режим работы;
Процедура управления ключами;
Совместимость используемых алгоритмов.
Описание слайда:
Выбор алгоритмов аутентификации При выборе протоколов аутентификации, необходимо определить, какой тип аутентификации требуется – односторонняя или двусторонняя, наличие доверенной стороны и т.д. Параметры протокола аутентификации: Тип алгоритма (симметричный, несимметричный); Конкретный вид алгоритма; Режим работы; Процедура управления ключами; Совместимость используемых алгоритмов.



Похожие презентации
Mypresentation.ru
Загрузить презентацию