🗊Презентация Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5

Нажмите для полного просмотра!
Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №1Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №2Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №3Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №4Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №5Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №6Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №7Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №8Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №9Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №10Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №11Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №12Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №13Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №14Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №15Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №16Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №17Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №18Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №19Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №20Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №21Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №22Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №23

Содержание

Вы можете ознакомиться и скачать презентацию на тему Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5. Доклад-сообщение содержит 23 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Математичне програмування. Задачі оптимізації. Задача лінійного програмування.
Описание слайда:
Математичне програмування. Задачі оптимізації. Задача лінійного програмування.

Слайд 2





Питання
Вступ до математичного програмування.
Способи подання оптимізаційної задачі.
Задача цілочисельного лінійного програмування.
Приклади застосування задач математичного програмування.
Аксіоматичні поняття математичного програмування.
Основні поняття систем лінійних рівнянь і нерівностей.
Лінійне програмування.
Описание слайда:
Питання Вступ до математичного програмування. Способи подання оптимізаційної задачі. Задача цілочисельного лінійного програмування. Приклади застосування задач математичного програмування. Аксіоматичні поняття математичного програмування. Основні поняття систем лінійних рівнянь і нерівностей. Лінійне програмування.

Слайд 3





Вступ до математичного програмування
Прикладна математична дисципліна, що досліджує екстремальні задачі і розробляє методи їх розв'язання називається математичним програмуванням.
Задачі, що розглядаються в математичному програмуванні називають оптимізаційними.
Описание слайда:
Вступ до математичного програмування Прикладна математична дисципліна, що досліджує екстремальні задачі і розробляє методи їх розв'язання називається математичним програмуванням. Задачі, що розглядаються в математичному програмуванні називають оптимізаційними.

Слайд 4





Математична модель – де досить точний опис задачі за допомогою математичного апарату (різного роду функцій, рівнянь, системи рівнянь, нерівностей тощо); вимоги, що накладаються до створення моделей досить суперечливі.
Математична модель – де досить точний опис задачі за допомогою математичного апарату (різного роду функцій, рівнянь, системи рівнянь, нерівностей тощо); вимоги, що накладаються до створення моделей досить суперечливі.
Побудова математичних моделей включає такі етапи:
Представляється у вигляді деякої залежності від невідомих величин переслідувана мета(прибуток від реалізації виробленої продукції, сумарні витрати на перевезення вантажів тощо). Отриманий враз називається цільовою функцією, функцією цілі, функціоналом або критерієм ефективності даної задачі.
Формулюються умови, що повинні бути накладені на невідомі величини (змінні), які витікають із наявності ресурсів, із необхідності задоволення потреб, із умов технології та інших економічних та технічних факторів. Ці умови представляють собою нерівності або рівняння.
Описание слайда:
Математична модель – де досить точний опис задачі за допомогою математичного апарату (різного роду функцій, рівнянь, системи рівнянь, нерівностей тощо); вимоги, що накладаються до створення моделей досить суперечливі. Математична модель – де досить точний опис задачі за допомогою математичного апарату (різного роду функцій, рівнянь, системи рівнянь, нерівностей тощо); вимоги, що накладаються до створення моделей досить суперечливі. Побудова математичних моделей включає такі етапи: Представляється у вигляді деякої залежності від невідомих величин переслідувана мета(прибуток від реалізації виробленої продукції, сумарні витрати на перевезення вантажів тощо). Отриманий враз називається цільовою функцією, функцією цілі, функціоналом або критерієм ефективності даної задачі. Формулюються умови, що повинні бути накладені на невідомі величини (змінні), які витікають із наявності ресурсів, із необхідності задоволення потреб, із умов технології та інших економічних та технічних факторів. Ці умови представляють собою нерівності або рівняння.

Слайд 5


Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №5
Описание слайда:

Слайд 6





Прикладом використання знань з математичного програмування може бути розв’язання таких виробничих задач:

отримання максимального прибутку або випуску максимального об’єму продукції при заданих матеріальних, трудових, енергетичних або часових витратах;
забезпечення планових показників підприємства при мінімальному розмірі фінансових вкладень;
досягнення максимально короткого терміну виготовлення продукції, будівництва об'єкту, товарообігу, виробничого циклу і тому подібного при існуючих або заданих виробничих ресурсах;
вибір параметрів об’єкту або процесу, при яких забезпечується його максимальна корисність.
Описание слайда:
Прикладом використання знань з математичного програмування може бути розв’язання таких виробничих задач: отримання максимального прибутку або випуску максимального об’єму продукції при заданих матеріальних, трудових, енергетичних або часових витратах; забезпечення планових показників підприємства при мінімальному розмірі фінансових вкладень; досягнення максимально короткого терміну виготовлення продукції, будівництва об'єкту, товарообігу, виробничого циклу і тому подібного при існуючих або заданих виробничих ресурсах; вибір параметрів об’єкту або процесу, при яких забезпечується його максимальна корисність.

Слайд 7





Способи подання оптимізаційної задачі
змістовна (вербальна) постановка
формальна постановка
Приклад (змістовна постановка задачі).
Для виробництва столів і шаф меблева фабрика використовує деревину. Виготовлення одного столу потребує 2 м2 деревини, однієї шафи – 4 м2. Трудомісткість виробу складає: одного столу – 4 чол.-год, однієї шафи – 3 чол-год. Прибуток від реалізації становить: одного столу – 80 грн, однієї шафи – 100 грн. Підприємство для виготовлення столів і шаф у своєму розпорядженні має 200 м2 деревини та 600 чол-год фонду робочого часу. Визначити, скільки столів і шаф треба виготовити, щоб прибуток від реалізації всіх виробів був максимальним.
Описание слайда:
Способи подання оптимізаційної задачі змістовна (вербальна) постановка формальна постановка Приклад (змістовна постановка задачі). Для виробництва столів і шаф меблева фабрика використовує деревину. Виготовлення одного столу потребує 2 м2 деревини, однієї шафи – 4 м2. Трудомісткість виробу складає: одного столу – 4 чол.-год, однієї шафи – 3 чол-год. Прибуток від реалізації становить: одного столу – 80 грн, однієї шафи – 100 грн. Підприємство для виготовлення столів і шаф у своєму розпорядженні має 200 м2 деревини та 600 чол-год фонду робочого часу. Визначити, скільки столів і шаф треба виготовити, щоб прибуток від реалізації всіх виробів був максимальним.

Слайд 8





Поетапний процес побудови математичної моделі задачі.

Визначимо невідомі задачі.
Сформуємо цільову функцію.
Сформуємо математичну модель задачі без урахування обмежень задачі.
Визначимо обмеження задачі Ω, тобто область припустимих рішень.
Сформуємо завершальну математичну модель задачі (з урахуванням обмежень).
Описание слайда:
Поетапний процес побудови математичної моделі задачі. Визначимо невідомі задачі. Сформуємо цільову функцію. Сформуємо математичну модель задачі без урахування обмежень задачі. Визначимо обмеження задачі Ω, тобто область припустимих рішень. Сформуємо завершальну математичну модель задачі (з урахуванням обмежень).

Слайд 9





Задача цілочисельного лінійного програмування
Описание слайда:
Задача цілочисельного лінійного програмування

Слайд 10


Математичне програмування. Задачі оптимізації. Задача лінійного програмування. Лекція 5, слайд №10
Описание слайда:

Слайд 11





Динамічне програмування – це розділ математичного програмування, що пов'язаний з вирішенням екстремальних задач спеціальної структури, а саме задач, в яких процес пошуку оптимального рішення є багатоетапним.
Динамічне програмування – це розділ математичного програмування, що пов'язаний з вирішенням екстремальних задач спеціальної структури, а саме задач, в яких процес пошуку оптимального рішення є багатоетапним.
Стохастичне програмування має справу з екстремальними задачами, в постановці яких присутні випадкові величини.
Детерміновані задачі – це найбільш поширений клас задач математичного програмування. Вихідна інформація в таких задачах є повністю визначеною. Всі детерміновані задачі поділяються на задачі лінійного чи нелінійного програмування.
Нелінійне програмування. В задачах цього класу цільова функція й (або) обмеження є нелінійними функціями. В нелінійному програмуванні виділяють клас багатоекстремальних задач та клас задач опуклого програмування.
Описание слайда:
Динамічне програмування – це розділ математичного програмування, що пов'язаний з вирішенням екстремальних задач спеціальної структури, а саме задач, в яких процес пошуку оптимального рішення є багатоетапним. Динамічне програмування – це розділ математичного програмування, що пов'язаний з вирішенням екстремальних задач спеціальної структури, а саме задач, в яких процес пошуку оптимального рішення є багатоетапним. Стохастичне програмування має справу з екстремальними задачами, в постановці яких присутні випадкові величини. Детерміновані задачі – це найбільш поширений клас задач математичного програмування. Вихідна інформація в таких задачах є повністю визначеною. Всі детерміновані задачі поділяються на задачі лінійного чи нелінійного програмування. Нелінійне програмування. В задачах цього класу цільова функція й (або) обмеження є нелінійними функціями. В нелінійному програмуванні виділяють клас багатоекстремальних задач та клас задач опуклого програмування.

Слайд 12





В багатоекстремальних задачах цільова функція має декілька екстремумів. В задачах опуклого програмування – тільки один.
В багатоекстремальних задачах цільова функція має декілька екстремумів. В задачах опуклого програмування – тільки один.
Опукле програмування об’єднує три підкласи екстремальних задач:
– задачі при двобічних обмеженнях змінних і відсутності обмежень у вигляді рівнянь;
– задачі квадратичного програмування, які пов’язані з пошуком екстремуму квадратичної функції при лінійних обмеженнях;
– задачі в загальній постановці, тобто ті, що не належать до двох попередніх підкласів.
Лінійне програмування. В задачах цього класу цільова функція та всі обмеження є лінійними функціями. Лінійне програмування об’єднує:
– підклас задач дискретного програмування;
– підклас задач дрібно-лінійного програмування;
– підклас задач параметричного програмування;
– підклас транспортних задач.
Описание слайда:
В багатоекстремальних задачах цільова функція має декілька екстремумів. В задачах опуклого програмування – тільки один. В багатоекстремальних задачах цільова функція має декілька екстремумів. В задачах опуклого програмування – тільки один. Опукле програмування об’єднує три підкласи екстремальних задач: – задачі при двобічних обмеженнях змінних і відсутності обмежень у вигляді рівнянь; – задачі квадратичного програмування, які пов’язані з пошуком екстремуму квадратичної функції при лінійних обмеженнях; – задачі в загальній постановці, тобто ті, що не належать до двох попередніх підкласів. Лінійне програмування. В задачах цього класу цільова функція та всі обмеження є лінійними функціями. Лінійне програмування об’єднує: – підклас задач дискретного програмування; – підклас задач дрібно-лінійного програмування; – підклас задач параметричного програмування; – підклас транспортних задач.

Слайд 13





В задачах дискретного (цілочислового) програмування невідомі (змінні) можуть приймати тільки цілочислові значення. 
В задачах дискретного (цілочислового) програмування невідомі (змінні) можуть приймати тільки цілочислові значення. 
У задачах дрібно-лінійного програмування цільова функція являє собою відношення двох лінійних функцій, а функції, що визначають область припустимих рішень, є звичайними лінійними функціями. 
У задачах параметричного програмування цільова функція або функції обмежень, або й те й інше залежать від деяких параметрів (коефіцієнти можуть змінюватися в деяких межах). 
Окремим класом лінійних задач являють собою транспортні задачі, в яких змінні подаються у вигляді матриці.
Описание слайда:
В задачах дискретного (цілочислового) програмування невідомі (змінні) можуть приймати тільки цілочислові значення. В задачах дискретного (цілочислового) програмування невідомі (змінні) можуть приймати тільки цілочислові значення. У задачах дрібно-лінійного програмування цільова функція являє собою відношення двох лінійних функцій, а функції, що визначають область припустимих рішень, є звичайними лінійними функціями. У задачах параметричного програмування цільова функція або функції обмежень, або й те й інше залежать від деяких параметрів (коефіцієнти можуть змінюватися в деяких межах). Окремим класом лінійних задач являють собою транспортні задачі, в яких змінні подаються у вигляді матриці.

Слайд 14





До оптимізаційних задач можна віднести наступні класи задач:
– задачі планування виробництва (планування випуску продукції, завантаження встаткування, фінансування проектів, розподіл парку машин, календарне планування, сіткове планування);
– задачі організації виробництва (формування парку встаткування, про призначення, про реконструкцію підприємства, про розташування виробничих одиниць, про закриття заводу);
– транспортні задачі (перевезення вантажів з максимальним завантаженням транспорту й з максимальним об'ємом перевезень, розподіл транспортних засобів, розміщення вантажного флоту);
– комбінаторні задачі (про ранець, про лінійний розкрій, про розподіл пам'яті комп’ютера, про комівояжера).
Описание слайда:
До оптимізаційних задач можна віднести наступні класи задач: – задачі планування виробництва (планування випуску продукції, завантаження встаткування, фінансування проектів, розподіл парку машин, календарне планування, сіткове планування); – задачі організації виробництва (формування парку встаткування, про призначення, про реконструкцію підприємства, про розташування виробничих одиниць, про закриття заводу); – транспортні задачі (перевезення вантажів з максимальним завантаженням транспорту й з максимальним об'ємом перевезень, розподіл транспортних засобів, розміщення вантажного флоту); – комбінаторні задачі (про ранець, про лінійний розкрій, про розподіл пам'яті комп’ютера, про комівояжера).

Слайд 15





Аксіоматичні поняття математичного програмування
– цільова функція, цільова квадратична форма, функція плану, критерій оптимізації – функція, для якої треба визначити оптимальне рішення або знайти екстремальне значення. Позначення:
Описание слайда:
Аксіоматичні поняття математичного програмування – цільова функція, цільова квадратична форма, функція плану, критерій оптимізації – функція, для якої треба визначити оптимальне рішення або знайти екстремальне значення. Позначення:

Слайд 16





двобічна обмеженість змінних – вираз, що визначає відрізок можливих значень змінних. Позначення:
двобічна обмеженість змінних – вираз, що визначає відрізок можливих значень змінних. Позначення:

загальна задача математичного програмування – задача пошуку оптимального рішення або оптимуму нелінійної цільової функції. Позначення:
Описание слайда:
двобічна обмеженість змінних – вираз, що визначає відрізок можливих значень змінних. Позначення: двобічна обмеженість змінних – вираз, що визначає відрізок можливих значень змінних. Позначення: загальна задача математичного програмування – задача пошуку оптимального рішення або оптимуму нелінійної цільової функції. Позначення:

Слайд 17





Лінійне програмування
Загальна задача лінійного програмування (ЗЛП) формулюється в такий спосіб: знайти оптимум лінійної функції цілі     ,  якщо обмеження        i лінійні й вектор змінних        невід’ємний.
Аналітичний запис цієї задачі має вигляд:
Описание слайда:
Лінійне програмування Загальна задача лінійного програмування (ЗЛП) формулюється в такий спосіб: знайти оптимум лінійної функції цілі , якщо обмеження i лінійні й вектор змінних невід’ємний. Аналітичний запис цієї задачі має вигляд:

Слайд 18





Канонічна ЗЛП
Описание слайда:
Канонічна ЗЛП

Слайд 19





Приклад
Описание слайда:
Приклад

Слайд 20





Розв’язання ЗЛП графічним методом
Описание слайда:
Розв’язання ЗЛП графічним методом

Слайд 21





Алгоритм розв’язання ЗЛП графічним методом
Приведення математичної моделі задачі до вигляду 1.
Побудова прямих, визначених рівняннями ai1x1+ai2x2=bi, 
       
Знаходження напівплощин, обумовлених кожним з обмежень задачі 1.
Виділення многокутника рішень.
Побудова прямої y0=c1x1+c2x2, що проходить через многокутник рішень.
Побудова вектора 
Переміщення прямої y0=c1x1+c2x2 в напрямку вектора
до границі області Ω або у зворотному напрямку вектора
Визначення координат граничної точки шляхом розв’язання системи двох рівнянь.
Обчислення значення цільової функції у* в точці
Описание слайда:
Алгоритм розв’язання ЗЛП графічним методом Приведення математичної моделі задачі до вигляду 1. Побудова прямих, визначених рівняннями ai1x1+ai2x2=bi, Знаходження напівплощин, обумовлених кожним з обмежень задачі 1. Виділення многокутника рішень. Побудова прямої y0=c1x1+c2x2, що проходить через многокутник рішень. Побудова вектора Переміщення прямої y0=c1x1+c2x2 в напрямку вектора до границі області Ω або у зворотному напрямку вектора Визначення координат граничної точки шляхом розв’язання системи двох рівнянь. Обчислення значення цільової функції у* в точці

Слайд 22





Пошук максимуму цільової функції
Описание слайда:
Пошук максимуму цільової функції

Слайд 23





Приклад
Знайти максимум і мінімум функції у = х1+х2 при обмеженнях:
Описание слайда:
Приклад Знайти максимум і мінімум функції у = х1+х2 при обмеженнях:



Похожие презентации
Mypresentation.ru
Загрузить презентацию