🗊Презентация Таблицы Excel. Функции и сложные вычисления

Нажмите для полного просмотра!
Таблицы Excel. Функции и сложные вычисления, слайд №1Таблицы Excel. Функции и сложные вычисления, слайд №2Таблицы Excel. Функции и сложные вычисления, слайд №3Таблицы Excel. Функции и сложные вычисления, слайд №4Таблицы Excel. Функции и сложные вычисления, слайд №5Таблицы Excel. Функции и сложные вычисления, слайд №6Таблицы Excel. Функции и сложные вычисления, слайд №7Таблицы Excel. Функции и сложные вычисления, слайд №8Таблицы Excel. Функции и сложные вычисления, слайд №9Таблицы Excel. Функции и сложные вычисления, слайд №10Таблицы Excel. Функции и сложные вычисления, слайд №11Таблицы Excel. Функции и сложные вычисления, слайд №12Таблицы Excel. Функции и сложные вычисления, слайд №13Таблицы Excel. Функции и сложные вычисления, слайд №14Таблицы Excel. Функции и сложные вычисления, слайд №15Таблицы Excel. Функции и сложные вычисления, слайд №16Таблицы Excel. Функции и сложные вычисления, слайд №17Таблицы Excel. Функции и сложные вычисления, слайд №18Таблицы Excel. Функции и сложные вычисления, слайд №19Таблицы Excel. Функции и сложные вычисления, слайд №20Таблицы Excel. Функции и сложные вычисления, слайд №21Таблицы Excel. Функции и сложные вычисления, слайд №22Таблицы Excel. Функции и сложные вычисления, слайд №23Таблицы Excel. Функции и сложные вычисления, слайд №24Таблицы Excel. Функции и сложные вычисления, слайд №25Таблицы Excel. Функции и сложные вычисления, слайд №26Таблицы Excel. Функции и сложные вычисления, слайд №27Таблицы Excel. Функции и сложные вычисления, слайд №28Таблицы Excel. Функции и сложные вычисления, слайд №29Таблицы Excel. Функции и сложные вычисления, слайд №30Таблицы Excel. Функции и сложные вычисления, слайд №31Таблицы Excel. Функции и сложные вычисления, слайд №32Таблицы Excel. Функции и сложные вычисления, слайд №33Таблицы Excel. Функции и сложные вычисления, слайд №34Таблицы Excel. Функции и сложные вычисления, слайд №35Таблицы Excel. Функции и сложные вычисления, слайд №36Таблицы Excel. Функции и сложные вычисления, слайд №37Таблицы Excel. Функции и сложные вычисления, слайд №38Таблицы Excel. Функции и сложные вычисления, слайд №39Таблицы Excel. Функции и сложные вычисления, слайд №40Таблицы Excel. Функции и сложные вычисления, слайд №41

Содержание

Вы можете ознакомиться и скачать презентацию на тему Таблицы Excel. Функции и сложные вычисления. Доклад-сообщение содержит 41 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





ТАБЛИЦЫ EXCEL. 
Функции и сложные вычисления
Описание слайда:
ТАБЛИЦЫ EXCEL. Функции и сложные вычисления

Слайд 2





1. Работа с функциями 
   Функция Excel – это специальная формула, хранящаяся в памяти приложения Excel. Каждая функция включает две части: 
имя функции (например, СУММ);
аргументы. 
   Имя описывает операцию, которую эта функция выполняет. Аргументы – это данные, которые используются функцией для получения результата.
Описание слайда:
1. Работа с функциями Функция Excel – это специальная формула, хранящаяся в памяти приложения Excel. Каждая функция включает две части: имя функции (например, СУММ); аргументы. Имя описывает операцию, которую эта функция выполняет. Аргументы – это данные, которые используются функцией для получения результата.

Слайд 3





2. Мастер функций
   Для запуска Мастера функций, можно воспользоваться одним из следующих способов:
щелкнуть мышью по кнопке Мастер функций на панели инструментов Excel. На ней изображены символы      ;
выполнить команду Вставка – Функция.
Описание слайда:
2. Мастер функций Для запуска Мастера функций, можно воспользоваться одним из следующих способов: щелкнуть мышью по кнопке Мастер функций на панели инструментов Excel. На ней изображены символы ; выполнить команду Вставка – Функция.

Слайд 4





Работа Мастера функций состоит из двух шагов. Сразу же после его запуска открывается первое диалоговое окно вида:
Описание слайда:
Работа Мастера функций состоит из двух шагов. Сразу же после его запуска открывается первое диалоговое окно вида:

Слайд 5





Второе окно Мастера функций содержит поля для ввода аргументов выбранной функции.
Описание слайда:
Второе окно Мастера функций содержит поля для ввода аргументов выбранной функции.

Слайд 6





ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ФУНКЦИЙ EXCEL
Описание слайда:
ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ФУНКЦИЙ EXCEL

Слайд 7





Пример1. Использование функции ЕСЛИ
ЗАДАНИЕ.
  Для следующей ниже таблицы вычислить величину скидки, которая определяется по правилу: если заказчик заплатил сумму, превышающую 1000$, скидка составит 20%, в противном случае – 10%.
Описание слайда:
Пример1. Использование функции ЕСЛИ ЗАДАНИЕ. Для следующей ниже таблицы вычислить величину скидки, которая определяется по правилу: если заказчик заплатил сумму, превышающую 1000$, скидка составит 20%, в противном случае – 10%.

Слайд 8


Таблицы Excel. Функции и сложные вычисления, слайд №8
Описание слайда:

Слайд 9





Пример 2. Использование функций работы с датами
ЗАДАНИЕ.
   Для следующей ниже таблицы подсчитать возраст сотрудников фирмы.
Описание слайда:
Пример 2. Использование функций работы с датами ЗАДАНИЕ. Для следующей ниже таблицы подсчитать возраст сотрудников фирмы.

Слайд 10


Таблицы Excel. Функции и сложные вычисления, слайд №10
Описание слайда:

Слайд 11





Финансовые функции Excel
В пакете Microsoft Excel для выполнения финансовых расчетов имеется специальная группа функций, получивших название финансовых.
С помощью финансовых функций осуществляются такие типичные финансовые расчеты, как: вычисление суммы платежа по погашению ссуды (кредита), стоимость вложения или ссуды по прошествии некоторого времени и др.
Описание слайда:
Финансовые функции Excel В пакете Microsoft Excel для выполнения финансовых расчетов имеется специальная группа функций, получивших название финансовых. С помощью финансовых функций осуществляются такие типичные финансовые расчеты, как: вычисление суммы платежа по погашению ссуды (кредита), стоимость вложения или ссуды по прошествии некоторого времени и др.

Слайд 12





Для вычисления характеристик финансовых операций удобно
использовать функции 
Б3, КПЕР, HOPMA, П3, ПЛТ
Описание слайда:
Для вычисления характеристик финансовых операций удобно использовать функции Б3, КПЕР, HOPMA, П3, ПЛТ

Слайд 13






Как следует из таблицы, большинство функций имеют одинаковый набор базовых аргументов:
ставка - процентная ставка (норма доходности заемных средств - i);
кпер - срок (число периодов - n) проведения операции;
выплата - величина периодического платежа; 
нз (нс) - начальное значение (величина PV);
бз (бс) - будущее значение (FV);
[тип] - тип начисления процентов (1 - начало периода, 0 - конец периода), необязательный аргумент.
Описание слайда:
Как следует из таблицы, большинство функций имеют одинаковый набор базовых аргументов: ставка - процентная ставка (норма доходности заемных средств - i); кпер - срок (число периодов - n) проведения операции; выплата - величина периодического платежа; нз (нс) - начальное значение (величина PV); бз (бс) - будущее значение (FV); [тип] - тип начисления процентов (1 - начало периода, 0 - конец периода), необязательный аргумент.

Слайд 14





Задание 
для самостоятельной работы
Найти информацию о финансовых функциях Excel и составить их описание; 
привести примеры использования финансовых функций.
Отчет должен быть представлен преподавателю на бумажном носителе.
При этом в текущем контроле оценивается оригинальность выполнения задания, интересные примеры, оригинальность использованных литературных источников.
Описание слайда:
Задание для самостоятельной работы Найти информацию о финансовых функциях Excel и составить их описание; привести примеры использования финансовых функций. Отчет должен быть представлен преподавателю на бумажном носителе. При этом в текущем контроле оценивается оригинальность выполнения задания, интересные примеры, оригинальность использованных литературных источников.

Слайд 15





Пример 3. Использование функции БЗ
Определить будущую величину вклада в 10000 $, помещенного в банк на 5 лет под 5% годовых, если начисление процентов осуществляется:
а) раз в год; 
б) раз в месяц.
Описание слайда:
Пример 3. Использование функции БЗ Определить будущую величину вклада в 10000 $, помещенного в банк на 5 лет под 5% годовых, если начисление процентов осуществляется: а) раз в год; б) раз в месяц.

Слайд 16


Таблицы Excel. Функции и сложные вычисления, слайд №16
Описание слайда:

Слайд 17





Следует обратить особое внимание на способы задания аргументов. 
Значение процентной ставки (аргумент ставка) обычно задается в виде десятичной дроби:
5% - 0,05.
Если начисление процентов осуществляется m раз в год, аргументы необходимо откорректировать соответствующим образом:
i = i/m;
n = nm.
Описание слайда:
Следует обратить особое внимание на способы задания аргументов. Значение процентной ставки (аргумент ставка) обычно задается в виде десятичной дроби: 5% - 0,05. Если начисление процентов осуществляется m раз в год, аргументы необходимо откорректировать соответствующим образом: i = i/m; n = nm.

Слайд 18






Аргумент «начальное значение - нз» здесь задан в виде отрицательной величины (-10000), так как с точки зрения вкладчика эта операция влечет за собой отток его денежных средств в текущем периоде с целью получения положительной величины (12762,82) через 5 лет.
Описание слайда:
Аргумент «начальное значение - нз» здесь задан в виде отрицательной величины (-10000), так как с точки зрения вкладчика эта операция влечет за собой отток его денежных средств в текущем периоде с целью получения положительной величины (12762,82) через 5 лет.

Слайд 19






Однако для банка, определяющего будущую сумму возврата средств по данному депозиту, этот аргумент должен быть задан в виде положительной величины, так как означает поступление средств (увеличение пассивов):
=БЗ(0,05; 5; 0; 10000) (Результат: -12762,82).
Полученный же при этом результат - отрицательная величина, так как операция означает расходование средств (возврат денег банком вкладчику).
Описание слайда:
Однако для банка, определяющего будущую сумму возврата средств по данному депозиту, этот аргумент должен быть задан в виде положительной величины, так как означает поступление средств (увеличение пассивов): =БЗ(0,05; 5; 0; 10000) (Результат: -12762,82). Полученный же при этом результат - отрицательная величина, так как операция означает расходование средств (возврат денег банком вкладчику).

Слайд 20





Пример 4. Использование функции КПЕР
По вкладу в 10000$, помещенному в банк под 5% годовых, начисляемых ежегодно, была выплачена сумма 12762,82$.
Определить срок проведения операции.
Описание слайда:
Пример 4. Использование функции КПЕР По вкладу в 10000$, помещенному в банк под 5% годовых, начисляемых ежегодно, была выплачена сумма 12762,82$. Определить срок проведения операции.

Слайд 21


Таблицы Excel. Функции и сложные вычисления, слайд №21
Описание слайда:

Слайд 22





Пример 5. Использование функции ППЛАТ (ПЛТ)
ЗАДАНИЕ.
    Предположим, что магазин собирается закупить 100 штук видеомагнитофонов по цене 350$ за штуку. Он берет кредит в 350*100=35000$ под 12% годовых на срок 2 года. Каковы будут ежемесячные выплаты магазина при погашении этого кредита? Каковы будут ежемесячные выплаты магазина при покупке другого количества видеомагнитофонов?
Описание слайда:
Пример 5. Использование функции ППЛАТ (ПЛТ) ЗАДАНИЕ. Предположим, что магазин собирается закупить 100 штук видеомагнитофонов по цене 350$ за штуку. Он берет кредит в 350*100=35000$ под 12% годовых на срок 2 года. Каковы будут ежемесячные выплаты магазина при погашении этого кредита? Каковы будут ежемесячные выплаты магазина при покупке другого количества видеомагнитофонов?

Слайд 23





Порядок выполнения действий. 
Составить следующие таблицы:
Описание слайда:
Порядок выполнения действий. Составить следующие таблицы:

Слайд 24






Ввести в ячейку F6 формулу: =F4*F5.
Ввести в ячейку C4 формулу: =F6.
Ввести в ячейку C8 формулу: =ППЛАТ(C5/12; C6; C4). Появится число –1647,57.
Изменить в ячейке F5 число 100 на 80. 
Посмотреть, каковы будут новые выплаты.
Описание слайда:
Ввести в ячейку F6 формулу: =F4*F5. Ввести в ячейку C4 формулу: =F6. Ввести в ячейку C8 формулу: =ППЛАТ(C5/12; C6; C4). Появится число –1647,57. Изменить в ячейке F5 число 100 на 80. Посмотреть, каковы будут новые выплаты.

Слайд 25





Пример 6. Финансовая задача 
   В сберегательном банке имеются два вида денежных вкладов: простой и сложный (иногда называется капитализированным). Простой вклад составляет P1, сложный - Р2 процентов в месяц. При простом вкладе проценты начисляются от первоначально вложенной суммы S0. При сложном вкладе очередное начисление осуществляется по итогам предыдущего, т.е. происходит начисление процентов на проценты.
Описание слайда:
Пример 6. Финансовая задача В сберегательном банке имеются два вида денежных вкладов: простой и сложный (иногда называется капитализированным). Простой вклад составляет P1, сложный - Р2 процентов в месяц. При простом вкладе проценты начисляются от первоначально вложенной суммы S0. При сложном вкладе очередное начисление осуществляется по итогам предыдущего, т.е. происходит начисление процентов на проценты.

Слайд 26






Исследуйте финансовую модель для ответа на вопрос:
Каким вкладом и в какие сроки выгодно пользоваться?
Проведите исследования для 
S0=1 000 000 руб; Р1=6%; Р2=4%.
Описание слайда:
Исследуйте финансовую модель для ответа на вопрос: Каким вкладом и в какие сроки выгодно пользоваться? Проведите исследования для S0=1 000 000 руб; Р1=6%; Р2=4%.

Слайд 27





Математическая модель
Описание слайда:
Математическая модель

Слайд 28






Соотношение простого и сложного вкладов через N месяцев определяется знаком разности    
АN  - BN.
Математическая постановка задачи: Определить значение N, при котором изменяется знак разности 
АN  - BN .
Описание слайда:
Соотношение простого и сложного вкладов через N месяцев определяется знаком разности АN - BN. Математическая постановка задачи: Определить значение N, при котором изменяется знак разности АN - BN .

Слайд 29





Итак, необходимо заполнить таблицу следующего вида:
Описание слайда:
Итак, необходимо заполнить таблицу следующего вида:

Слайд 30





Пример 7. Расчет подоходного налога
Описание слайда:
Пример 7. Расчет подоходного налога

Слайд 31





Формула для расчета подоходного налога:
Пусть сумма, с которой берется подоходный налог, находится в ячейке B2, тогда формула имеет вид:
 =ЕСЛИ(B2<52800; B2*9%;
  ЕСЛИ(B2<132000; 4752+(B2-52800)*15%; 
  ЕСЛИ(B2<184800; 16632+(B2-132000)* 20%; 
  ЕСЛИ(B2<237600; 27192+(B2-184800)* 25%;
  40392+(B2-237600)*30%))))
Описание слайда:
Формула для расчета подоходного налога: Пусть сумма, с которой берется подоходный налог, находится в ячейке B2, тогда формула имеет вид: =ЕСЛИ(B2<52800; B2*9%; ЕСЛИ(B2<132000; 4752+(B2-52800)*15%; ЕСЛИ(B2<184800; 16632+(B2-132000)* 20%; ЕСЛИ(B2<237600; 27192+(B2-184800)* 25%; 40392+(B2-237600)*30%))))

Слайд 32





Пример 8. Статистическая обработка результатов эксперимента
   Методами статистической обработки результатов эксперимента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, получаемые в ходе эксперимента, можно обобщать, приводить в систему, выявляя скрытые в них закономерности.
Описание слайда:
Пример 8. Статистическая обработка результатов эксперимента Методами статистической обработки результатов эксперимента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, получаемые в ходе эксперимента, можно обобщать, приводить в систему, выявляя скрытые в них закономерности.

Слайд 33





Выборочное среднее значение
Выборочное среднее значение как статистический показатель представляет собой среднюю оценку. 
Эта оценка может характеризовать, например, степень развития некоторого качества в целом у той группы людей, которая была подвергнута психодиагностическому обследованию. 
Сравнивая непосредственно средние значения двух или нескольких выборок, можно судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.
Описание слайда:
Выборочное среднее значение Выборочное среднее значение как статистический показатель представляет собой среднюю оценку. Эта оценка может характеризовать, например, степень развития некоторого качества в целом у той группы людей, которая была подвергнута психодиагностическому обследованию. Сравнивая непосредственно средние значения двух или нескольких выборок, можно судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.

Слайд 34





Выборочное среднее определяется при помощи следующей формулы:
         
        Xср=
где
Хср – выборочная средняя величина по выборке;
n – количество элементов в выборке;
хk – частные значения элементов выборки.
Описание слайда:
Выборочное среднее определяется при помощи следующей формулы: Xср= где Хср – выборочная средняя величина по выборке; n – количество элементов в выборке; хk – частные значения элементов выборки.

Слайд 35





Пример. 
   Допустим, что в результате применения психодиагностической методики для оценки некоторого психологического свойства у десяти испытуемых мы получили следующие показатели степени развитости данного свойства: 
х1=5, x2=4, x3=5, х4=6, x5=7, x6=3, х7=6, x8=2, x9=8, x10=4
Получим: Хср=5,0.
Описание слайда:
Пример. Допустим, что в результате применения психодиагностической методики для оценки некоторого психологического свойства у десяти испытуемых мы получили следующие показатели степени развитости данного свойства: х1=5, x2=4, x3=5, х4=6, x5=7, x6=3, х7=6, x8=2, x9=8, x10=4 Получим: Хср=5,0.

Слайд 36





Дисперсия
   Дисперсия как статистическая величина характеризует, насколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения или разброс.  
   Дисперсия вычисляется по следующей формуле:
Описание слайда:
Дисперсия Дисперсия как статистическая величина характеризует, насколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения или разброс. Дисперсия вычисляется по следующей формуле:

Слайд 37





Пример.
   Пусть х1=5, x2=4, x3=5, х4=6, x5=7, x6=3, х7=6, x8=2, x9=8, x10=4 
   Мы видим, что все величины разные и отличаются не только друг от друга, но и от средней величины. 
   Меру их общего отличия от средней величины и характеризует дисперсия. Ее определяют для того, чтобы можно было отличать друг от друга величины, имеющие одинаковую среднюю, но разный разброс.
Описание слайда:
Пример. Пусть х1=5, x2=4, x3=5, х4=6, x5=7, x6=3, х7=6, x8=2, x9=8, x10=4 Мы видим, что все величины разные и отличаются не только друг от друга, но и от средней величины. Меру их общего отличия от средней величины и характеризует дисперсия. Ее определяют для того, чтобы можно было отличать друг от друга величины, имеющие одинаковую среднюю, но разный разброс.

Слайд 38






   Представим себе другую, отличную от предыдущей, выборку первичных значений, например, такую: 
х1=5, x2=4, x3=5, х4=6, x5=5, x6=6, х7=5, x8=4, x9=5, x10=5
   Легко убедиться в том, что ее средняя величина также равна 5,0. Но в данной выборке ее отдельные частные значения отличаются от средней гораздо меньше, чем в первой выборке.
Описание слайда:
Представим себе другую, отличную от предыдущей, выборку первичных значений, например, такую: х1=5, x2=4, x3=5, х4=6, x5=5, x6=6, х7=5, x8=4, x9=5, x10=5 Легко убедиться в том, что ее средняя величина также равна 5,0. Но в данной выборке ее отдельные частные значения отличаются от средней гораздо меньше, чем в первой выборке.

Слайд 39





ЗАДАНИЕ.
Создать и отформатировать следующую таблицу:
Описание слайда:
ЗАДАНИЕ. Создать и отформатировать следующую таблицу:

Слайд 40





Результаты вычислений будут иметь вид:
                                    Формула для
                                         вычисления
                                         отклонения (С2):
                                          Формула для
                                          вычисления
                                          дисперсии (С12):
Описание слайда:
Результаты вычислений будут иметь вид: Формула для вычисления отклонения (С2): Формула для вычисления дисперсии (С12):

Слайд 41





Результаты вычислений для двух групп:
Описание слайда:
Результаты вычислений для двух групп:



Похожие презентации
Mypresentation.ru
Загрузить презентацию