Описание слайда:
Властивість 3. (Теорема 3.3) Якщо відомо, що система векторів A1, A2, …, Ak (k≤n) у розкладі A1x1 +A2x2 + … + Anxn = A0, X≥0 лінійно незалежна і така, що
Властивість 3. (Теорема 3.3) Якщо відомо, що система векторів A1, A2, …, Ak (k≤n) у розкладі A1x1 +A2x2 + … + Anxn = A0, X≥0 лінійно незалежна і така, що
A1x1 + A2x2 + … + Akxk = A0,
де всі xj ≥ 0, то точка X = (x1, x2, …, xk, 0, …, 0) є кутовою точкою багатогранника розв’язків.
Властивість 4. (Теорема 3.4) Якщо X = (x1, x2, …, xn) – кутова точка багатогранника розв’язків, то вектори в розкладі
A1x1 + A2x2 + … + Anxn = A0, X ≥ 0,
що відповідають додатним xj, є лінійно незалежними.