🗊 Типы конденсаторов и их применение.

Категория: Физика
Нажмите для полного просмотра!
  
  Типы конденсаторов и их применение.  , слайд №1  
  Типы конденсаторов и их применение.  , слайд №2  
  Типы конденсаторов и их применение.  , слайд №3  
  Типы конденсаторов и их применение.  , слайд №4  
  Типы конденсаторов и их применение.  , слайд №5  
  Типы конденсаторов и их применение.  , слайд №6  
  Типы конденсаторов и их применение.  , слайд №7  
  Типы конденсаторов и их применение.  , слайд №8  
  Типы конденсаторов и их применение.  , слайд №9  
  Типы конденсаторов и их применение.  , слайд №10  
  Типы конденсаторов и их применение.  , слайд №11  
  Типы конденсаторов и их применение.  , слайд №12

Вы можете ознакомиться и скачать Типы конденсаторов и их применение. . Презентация содержит 12 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Типы конденсаторов и их применение.
Описание слайда:
Типы конденсаторов и их применение.

Слайд 2






Конденсатор - устройство для накопления заряда. Один из самых распространенных электрических компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.
Описание слайда:
Конденсатор - устройство для накопления заряда. Один из самых распространенных электрических компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

Слайд 3






В основном типы конденсаторов разделяют:
По характеру изменения емкости - постоянной емкости, переменной емкости и подстроечные.
По материалу диэлектрика - воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
По способу монтажа - для печатного или навесного монтажа.
Описание слайда:
В основном типы конденсаторов разделяют: По характеру изменения емкости - постоянной емкости, переменной емкости и подстроечные. По материалу диэлектрика - воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит). По способу монтажа - для печатного или навесного монтажа.

Слайд 4





Керамические конденсаторы.
Описание слайда:
Керамические конденсаторы.

Слайд 5





Пленочные конденсаторы.
Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.
Описание слайда:
Пленочные конденсаторы. Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

Слайд 6





Электролитические конденсаторы.
Электролитические конденсаторы обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.
Описание слайда:
Электролитические конденсаторы. Электролитические конденсаторы обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Слайд 7





Танталовые конденсаторы.
Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия - у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.
Описание слайда:
Танталовые конденсаторы. Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия - у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Слайд 8





Переменные конденсаторы.
Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы - приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала.
Описание слайда:
Переменные конденсаторы. Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы - приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала.

Слайд 9





Подстроечные конденсаторы.
Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.
Описание слайда:
Подстроечные конденсаторы. Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Слайд 10





Применение конденсаторов.	
Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять  ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
Описание слайда:
Применение конденсаторов. Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.

Слайд 11






Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.

В промышленности конденсаторные установки применяются для компенсации реактивной энергии.
Описание слайда:
Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п. Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт. В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

Слайд 12






Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. 
Но к сожалению, конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
Описание слайда:
Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению, конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.



Похожие презентации
Mypresentation.ru
Загрузить презентацию