🗊Презентация Законы сохранения

Категория: Физика
Нажмите для полного просмотра!
Законы сохранения, слайд №1Законы сохранения, слайд №2Законы сохранения, слайд №3Законы сохранения, слайд №4Законы сохранения, слайд №5Законы сохранения, слайд №6Законы сохранения, слайд №7Законы сохранения, слайд №8Законы сохранения, слайд №9Законы сохранения, слайд №10Законы сохранения, слайд №11Законы сохранения, слайд №12Законы сохранения, слайд №13Законы сохранения, слайд №14Законы сохранения, слайд №15Законы сохранения, слайд №16Законы сохранения, слайд №17Законы сохранения, слайд №18Законы сохранения, слайд №19Законы сохранения, слайд №20Законы сохранения, слайд №21Законы сохранения, слайд №22Законы сохранения, слайд №23Законы сохранения, слайд №24Законы сохранения, слайд №25Законы сохранения, слайд №26Законы сохранения, слайд №27Законы сохранения, слайд №28Законы сохранения, слайд №29Законы сохранения, слайд №30Законы сохранения, слайд №31Законы сохранения, слайд №32Законы сохранения, слайд №33Законы сохранения, слайд №34Законы сохранения, слайд №35Законы сохранения, слайд №36Законы сохранения, слайд №37Законы сохранения, слайд №38Законы сохранения, слайд №39Законы сохранения, слайд №40Законы сохранения, слайд №41Законы сохранения, слайд №42Законы сохранения, слайд №43Законы сохранения, слайд №44

Содержание

Вы можете ознакомиться и скачать презентацию на тему Законы сохранения. Доклад-сообщение содержит 44 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Омский государственный технический университет

Кафедра физики
Калистратова Л.Ф. 
Электронные лекции по разделам классической и релятивистской механики
6 лекций
(12 аудиторных часов)
Описание слайда:
Омский государственный технический университет Кафедра физики Калистратова Л.Ф. Электронные лекции по разделам классической и релятивистской механики 6 лекций (12 аудиторных часов)

Слайд 2





Тема 5. 
ЗАКОНЫ СОХРАНЕНИЯ  
План лекции
5.1. Законы сохранения в классической механике.
5.2. Закон сохранения механической энергии.
5.3. Закон сохранения импульса.
5.4. Закон сохранения момента импульса.
Описание слайда:
Тема 5. ЗАКОНЫ СОХРАНЕНИЯ План лекции 5.1. Законы сохранения в классической механике. 5.2. Закон сохранения механической энергии. 5.3. Закон сохранения импульса. 5.4. Закон сохранения момента импульса.

Слайд 3





5.1. Законы сохранения в классической механике
 В законах сохранения энергии, импульса, момента импульса находят своё отражение фундаментальные свойства пространства и времени, а также факт бесконечного их существования.
Закон сохранения энергии является следствием однородности времени.
Закон сохранения импульса отражает однородность пространства. 
Закон сохранения момента импульса – отражает изотропность пространства.
Описание слайда:
5.1. Законы сохранения в классической механике В законах сохранения энергии, импульса, момента импульса находят своё отражение фундаментальные свойства пространства и времени, а также факт бесконечного их существования. Закон сохранения энергии является следствием однородности времени. Закон сохранения импульса отражает однородность пространства. Закон сохранения момента импульса – отражает изотропность пространства.

Слайд 4





Однородность времени отражает тот факт, что результат опыта не зависит от времени его проведения.
Однородность времени отражает тот факт, что результат опыта не зависит от времени его проведения.
Однородность пространства отражает тот факт, что результат опыта не зависит от места его проведения.
Изотропность пространства отражает тот факт, что результат опыта не зависит от направления осей координат.
Описание слайда:
Однородность времени отражает тот факт, что результат опыта не зависит от времени его проведения. Однородность времени отражает тот факт, что результат опыта не зависит от времени его проведения. Однородность пространства отражает тот факт, что результат опыта не зависит от места его проведения. Изотропность пространства отражает тот факт, что результат опыта не зависит от направления осей координат.

Слайд 5





Важно понять условия, при которых выполняется тот или иной закон сохранения. 
Важно понять условия, при которых выполняется тот или иной закон сохранения. 
В механической системе тела могут взаимодействовать как между собой (внутренние силы), так и с внешними телами (внешние силы).
Механическая система называется замкнутой или изолированной, если на нее не действуют внешние силы (система не обменивается с внешними телами энергией).
Понятие замкнутой системы является абстракцией.
Описание слайда:
Важно понять условия, при которых выполняется тот или иной закон сохранения. Важно понять условия, при которых выполняется тот или иной закон сохранения. В механической системе тела могут взаимодействовать как между собой (внутренние силы), так и с внешними телами (внешние силы). Механическая система называется замкнутой или изолированной, если на нее не действуют внешние силы (система не обменивается с внешними телами энергией). Понятие замкнутой системы является абстракцией.

Слайд 6





Реальным приближением к замкнутой системе  служит система:
Реальным приближением к замкнутой системе  служит система:
взаимодействием которой с внешними телами можно пренебречь;
система, в которой внешние силы практически компенсируются.
 Система называется незамкнутой, если на неё действуют  внешние силы и их результирующая сила отлична от нуля.

 В любых системах сумма всех внутренних сил равна нулю, поскольку силы взаимодействия каждой пары тел равны по модулю и противоположны по направлению.
Описание слайда:
Реальным приближением к замкнутой системе служит система: Реальным приближением к замкнутой системе служит система: взаимодействием которой с внешними телами можно пренебречь; система, в которой внешние силы практически компенсируются. Система называется незамкнутой, если на неё действуют внешние силы и их результирующая сила отлична от нуля. В любых системах сумма всех внутренних сил равна нулю, поскольку силы взаимодействия каждой пары тел равны по модулю и противоположны по направлению.

Слайд 7





Механическая система называется консервативной, если на тела системы действуют только консервативные силы. 
Механическая система называется консервативной, если на тела системы действуют только консервативные силы.
Описание слайда:
Механическая система называется консервативной, если на тела системы действуют только консервативные силы. Механическая система называется консервативной, если на тела системы действуют только консервативные силы.

Слайд 8





5.2.   Закон сохранения механической энергии
Пусть на механическую систему тел действуют как внутренние, так и  внешние силы.
Силы взаимодействия могут быть как консервативными, так и неконсервативными.
 
Изменение кинетической энергии системы равно работе всех действующих на систему сил.
Описание слайда:
5.2. Закон сохранения механической энергии Пусть на механическую систему тел действуют как внутренние, так и внешние силы. Силы взаимодействия могут быть как консервативными, так и неконсервативными. Изменение кинетической энергии системы равно работе всех действующих на систему сил.

Слайд 9






работа внутренних консервативных сил,
- работа внутренних неконсервативных сил.
Описание слайда:
работа внутренних консервативных сил, - работа внутренних неконсервативных сил.

Слайд 10





 
 
– работа внешних консервативных  сил;                       
 
- работа внешних неконсервативных сил.
Описание слайда:
– работа внешних консервативных сил; - работа внешних неконсервативных сил.

Слайд 11





Работа внутренних консервативных сил равна убыли потенциальной энергии взаимодействия тел системы друг с другом:
Работа внутренних консервативных сил равна убыли потенциальной энергии взаимодействия тел системы друг с другом:
Работа внешних консервативных сил равна убыли потенциальной энергии системы во внешних потенциальных полях:
Описание слайда:
Работа внутренних консервативных сил равна убыли потенциальной энергии взаимодействия тел системы друг с другом: Работа внутренних консервативных сил равна убыли потенциальной энергии взаимодействия тел системы друг с другом: Работа внешних консервативных сил равна убыли потенциальной энергии системы во внешних потенциальных полях:

Слайд 12





Выполняя математические операции переноса слагаемых в левую часть основного выражения, получим
Выполняя математические операции переноса слагаемых в левую часть основного выражения, получим
Заметим, что потенциальная энергия механической системы  Eп  складывается из 
потенциальной энергии взаимодействия точек системы друг с другом ЕП1;
потенциальной энергии во внешних потенциальных полях ЕП2.
Описание слайда:
Выполняя математические операции переноса слагаемых в левую часть основного выражения, получим Выполняя математические операции переноса слагаемых в левую часть основного выражения, получим Заметим, что потенциальная энергия механической системы Eп складывается из потенциальной энергии взаимодействия точек системы друг с другом ЕП1; потенциальной энергии во внешних потенциальных полях ЕП2.

Слайд 13







Полная механическая энергия системы:                    

Изменение полной механической энергии:
Описание слайда:
Полная механическая энергия системы: Изменение полной механической энергии:

Слайд 14





В результате вывода получили, что
В результате вывода получили, что


Закон сохранения полной механической энергии для неконсервативной системы тел формулируется: изменение полной механической энергии неконсервативной системы тел равно  суммарной работе любых неконсервативных сил, действующих на тела системы.
Описание слайда:
В результате вывода получили, что В результате вывода получили, что Закон сохранения полной механической энергии для неконсервативной системы тел формулируется: изменение полной механической энергии неконсервативной системы тел равно суммарной работе любых неконсервативных сил, действующих на тела системы.

Слайд 15





Если в системе  неконсервативные силы отсутствуют:
Если в системе  неконсервативные силы отсутствуют:
тогда система тел будет являться  консервативной.
При этом
                                                               

Закон сохранения энергии формулируется:
полная механическая энергия консервативной системы тел сохраняется (не меняется, остаётся величиной постоянной).
Описание слайда:
Если в системе неконсервативные силы отсутствуют: Если в системе неконсервативные силы отсутствуют: тогда система тел будет являться консервативной. При этом Закон сохранения энергии формулируется: полная механическая энергия консервативной системы тел сохраняется (не меняется, остаётся величиной постоянной).

Слайд 16





5.2.   Закон сохранения импульса
Рассмотрим механическую систему, состоящую из  n  тел, которые могут взаимодействовать как между собой (это внутренние силы), так и с внешними телами (это внешние силы).
Те и другие силы взаимодействия могут быть как консервативными, так и неконсервативными.

Внутренние силы обозначим  символами                  . 
Внешние силы, действующие на каждое из тел, обозначим    как                   .
Описание слайда:
5.2. Закон сохранения импульса Рассмотрим механическую систему, состоящую из n тел, которые могут взаимодействовать как между собой (это внутренние силы), так и с внешними телами (это внешние силы). Те и другие силы взаимодействия могут быть как консервативными, так и неконсервативными. Внутренние силы обозначим символами . Внешние силы, действующие на каждое из тел, обозначим как .

Слайд 17


Законы сохранения, слайд №17
Описание слайда:

Слайд 18





Запишем для каждого из тел второй закон Ньютона в его наиболее общей форме.
Запишем для каждого из тел второй закон Ньютона в его наиболее общей форме.
Описание слайда:
Запишем для каждого из тел второй закон Ньютона в его наиболее общей форме. Запишем для каждого из тел второй закон Ньютона в его наиболее общей форме.

Слайд 19





Просуммируем левые и правые части равенств. 
Просуммируем левые и правые части равенств. 
По третьему закону Ньютона сумма всех внутренних сил  равна нулю, поскольку они попарно равны по модулю и противоположны по направлению.
При сложении равенств получим следующее выражение:
Описание слайда:
Просуммируем левые и правые части равенств. Просуммируем левые и правые части равенств. По третьему закону Ньютона сумма всех внутренних сил равна нулю, поскольку они попарно равны по модулю и противоположны по направлению. При сложении равенств получим следующее выражение:

Слайд 20





                                                                                           Результирующим импульсом системы тел называется векторная сумма импульсов отдельных тел:
                                                                                           Результирующим импульсом системы тел называется векторная сумма импульсов отдельных тел:
Векторная сумма действующих на систему сил есть равнодействующая всех внешних сил.
Описание слайда:
Результирующим импульсом системы тел называется векторная сумма импульсов отдельных тел: Результирующим импульсом системы тел называется векторная сумма импульсов отдельных тел: Векторная сумма действующих на систему сил есть равнодействующая всех внешних сил.

Слайд 21





Тогда можно переписать
Тогда можно переписать
                                              или                  
Закон сохранения импульса для незамкнутой системы тел формулируется: в незамкнутой системе тел скорость изменения импульса системы равна равнодействующей внешних сил

Если система замкнута, то
Описание слайда:
Тогда можно переписать Тогда можно переписать или Закон сохранения импульса для незамкнутой системы тел формулируется: в незамкнутой системе тел скорость изменения импульса системы равна равнодействующей внешних сил Если система замкнута, то

Слайд 22





                                                                          
                                                                          
Тогда                                              
   

Закон сохранения импульса формулируется: 
результирующий импульс замкнутой системы тел сохраняется.

Естественно, что при этом остается постоянной и сумма проекций импульсов тел системы на любую координатную ось.
Описание слайда:
Тогда Закон сохранения импульса формулируется: результирующий импульс замкнутой системы тел сохраняется. Естественно, что при этом остается постоянной и сумма проекций импульсов тел системы на любую координатную ось.

Слайд 23





На практике достаточно часто приходится иметь дело со взаимодействием тел в условиях, когда действием внешних сил пренебречь нельзя (система не является замкнутой). 
На практике достаточно часто приходится иметь дело со взаимодействием тел в условиях, когда действием внешних сил пренебречь нельзя (система не является замкнутой). 
В таких случаях  можно найти такое направление (координатную ось Х), на которое внешние силы имеют нулевые проекции. 
Тогда будет оставаться постоянной не векторная сумма импульсов всех тел системы, а сумма проекций импульсов на данную координатную ось:
                             PX = const.
Описание слайда:
На практике достаточно часто приходится иметь дело со взаимодействием тел в условиях, когда действием внешних сил пренебречь нельзя (система не является замкнутой). На практике достаточно часто приходится иметь дело со взаимодействием тел в условиях, когда действием внешних сил пренебречь нельзя (система не является замкнутой). В таких случаях можно найти такое направление (координатную ось Х), на которое внешние силы имеют нулевые проекции. Тогда будет оставаться постоянной не векторная сумма импульсов всех тел системы, а сумма проекций импульсов на данную координатную ось: PX = const.

Слайд 24





С законом сохранения импульса связаны такие понятия как:
С законом сохранения импульса связаны такие понятия как:
- реактивное движение:
отдача:
Описание слайда:
С законом сохранения импульса связаны такие понятия как: С законом сохранения импульса связаны такие понятия как: - реактивное движение: отдача:

Слайд 25





5.3.   Закон сохранения момента импульса
 Рассмотрим систему из  n тел (или материальных точек), взаимодействующих как между собой, так и с внешними телами. 
Выберем  точку О, относительно которой будем отсчитывать моменты импульсов тел (частиц) и моменты сил, приложенных к ним.
Описание слайда:
5.3. Закон сохранения момента импульса Рассмотрим систему из n тел (или материальных точек), взаимодействующих как между собой, так и с внешними телами. Выберем точку О, относительно которой будем отсчитывать моменты импульсов тел (частиц) и моменты сил, приложенных к ним.

Слайд 26


Законы сохранения, слайд №26
Описание слайда:

Слайд 27





Запишем основной закон динамики вращательного движения для каждого тела в отдельности.
Запишем основной закон динамики вращательного движения для каждого тела в отдельности.
Описание слайда:
Запишем основной закон динамики вращательного движения для каждого тела в отдельности. Запишем основной закон динамики вращательного движения для каждого тела в отдельности.

Слайд 28





                  
                  
                        – моменты внутренних сил, действующих между  i-ым   и   j-ым телами ;
                   – моменты внешних  сил, действующих на   i- ое тело.
 Сложим левые и правые части равенств:
Учтем, что сумма моментов внутренних сил равна нулю.
Описание слайда:
– моменты внутренних сил, действующих между i-ым и j-ым телами ; – моменты внешних сил, действующих на i- ое тело. Сложим левые и правые части равенств: Учтем, что сумма моментов внутренних сил равна нулю.

Слайд 29





Моментом импульса системы тел называется векторная сумма моментов импульсов всех тел системы.
Моментом импульса системы тел называется векторная сумма моментов импульсов всех тел системы.
Векторная сумма моментов внешних сил представляет собой результирующий момент всех внешних сил, действующих на систему:

                                                                                                                    
 Таким образом:
Описание слайда:
Моментом импульса системы тел называется векторная сумма моментов импульсов всех тел системы. Моментом импульса системы тел называется векторная сумма моментов импульсов всех тел системы. Векторная сумма моментов внешних сил представляет собой результирующий момент всех внешних сил, действующих на систему: Таким образом:

Слайд 30









Закон сохранения импульса  для  незамкнутой  системы формулируется: скорость изменения результирующего момента импульса незамкнутой системы тел равна равнодействующему моменту внешних сил.

Если внешние силы отсутствуют или их равнодействующая сила равна нулю, то система будет замкнутой.
Описание слайда:
Закон сохранения импульса для незамкнутой системы формулируется: скорость изменения результирующего момента импульса незамкнутой системы тел равна равнодействующему моменту внешних сил. Если внешние силы отсутствуют или их равнодействующая сила равна нулю, то система будет замкнутой.

Слайд 31





Тогда  суммарный момент внешних сил относительно произвольной точки О может быть равен нулю:
Тогда  суммарный момент внешних сил относительно произвольной точки О может быть равен нулю:
Следовательно



Закон сохранения момента импульса формулируется: результирующий момент импульса замкнутой системы тел остается постоянным.
Описание слайда:
Тогда суммарный момент внешних сил относительно произвольной точки О может быть равен нулю: Тогда суммарный момент внешних сил относительно произвольной точки О может быть равен нулю: Следовательно Закон сохранения момента импульса формулируется: результирующий момент импульса замкнутой системы тел остается постоянным.

Слайд 32





Рисунок иллюстрирует закон сохранения момента импульса:                             , но
Рисунок иллюстрирует закон сохранения момента импульса:                             , но
Описание слайда:
Рисунок иллюстрирует закон сохранения момента импульса: , но Рисунок иллюстрирует закон сохранения момента импульса: , но

Слайд 33





На практике часто приходится рассматривать вращение взаимодействующих тел относительно некоторой неподвижной оси Z.
На практике часто приходится рассматривать вращение взаимодействующих тел относительно некоторой неподвижной оси Z.
В этом случае может сохраняться суммарный момент импульса системы относительно данной оси Lz. 
Необходимым условием этого является равенство нулю суммарного момента внешних сил относительно этой же оси вращения.  
M Z, ВНЕШ= 0. 
Последнее может выполняться и для незамкнутой системы, если внешние силы параллельны оси вращения или пересекают эту ось.
Описание слайда:
На практике часто приходится рассматривать вращение взаимодействующих тел относительно некоторой неподвижной оси Z. На практике часто приходится рассматривать вращение взаимодействующих тел относительно некоторой неподвижной оси Z. В этом случае может сохраняться суммарный момент импульса системы относительно данной оси Lz. Необходимым условием этого является равенство нулю суммарного момента внешних сил относительно этой же оси вращения. M Z, ВНЕШ= 0. Последнее может выполняться и для незамкнутой системы, если внешние силы параллельны оси вращения или пересекают эту ось.

Слайд 34





Применение законов сохранения к удару тел
Центральный (лобовой) удар тел происходит по линии, соединяющей центры тяжести тел. 
Бывает трёх типов: 
1. абсолютно неупругий удар; 
2. абсолютно упругий удар;
3. упругий (промежуточный) удар.
Описание слайда:
Применение законов сохранения к удару тел Центральный (лобовой) удар тел происходит по линии, соединяющей центры тяжести тел. Бывает трёх типов: 1. абсолютно неупругий удар; 2. абсолютно упругий удар; 3. упругий (промежуточный) удар.

Слайд 35





Абсолютно неупругий удар
Абсолютно неупругий удар
При абсолютно неупругом ударе тела:
- деформируются;
- после удара движутся с одинаковыми скоростями.

При деформации часть кинетической энергии превращается во внутреннюю энергию, поэтому для этого удара  сохраняется только импульс системы тел:
Описание слайда:
Абсолютно неупругий удар Абсолютно неупругий удар При абсолютно неупругом ударе тела: - деформируются; - после удара движутся с одинаковыми скоростями. При деформации часть кинетической энергии превращается во внутреннюю энергию, поэтому для этого удара сохраняется только импульс системы тел:

Слайд 36





Закон сохранения импульса в скалярной форме в проекциях на ось х:
Закон сохранения импульса в скалярной форме в проекциях на ось х:
Описание слайда:
Закон сохранения импульса в скалярной форме в проекциях на ось х: Закон сохранения импульса в скалярной форме в проекциях на ось х:

Слайд 37





Закон сохранения энергии для абсолютно неупругого удара тоже можно записать, но только с учётом той энергии, которая перейдёт в другие виды энергии:
Закон сохранения энергии для абсолютно неупругого удара тоже можно записать, но только с учётом той энергии, которая перейдёт в другие виды энергии:
энергию, ушедшую на деформацию тел;
энергию, выделенную в виде тепла;
энергию, ушедшую на трение и т.д.
Описание слайда:
Закон сохранения энергии для абсолютно неупругого удара тоже можно записать, но только с учётом той энергии, которая перейдёт в другие виды энергии: Закон сохранения энергии для абсолютно неупругого удара тоже можно записать, но только с учётом той энергии, которая перейдёт в другие виды энергии: энергию, ушедшую на деформацию тел; энергию, выделенную в виде тепла; энергию, ушедшую на трение и т.д.

Слайд 38





Абсолютно упругий удар
Абсолютно упругий удар
При абсолютно упругом ударе тела:
- не деформируются;
- после удара движутся с разными скоростями и направлениями.
Для такого удара справедливыми являются два закона сохранения:  
импульса 
энергии
Описание слайда:
Абсолютно упругий удар Абсолютно упругий удар При абсолютно упругом ударе тела: - не деформируются; - после удара движутся с разными скоростями и направлениями. Для такого удара справедливыми являются два закона сохранения: импульса энергии

Слайд 39





Для указанного на рисунке случая абсолютно упругого удара законы сохранения импульса и энергии запишутся как
Для указанного на рисунке случая абсолютно упругого удара законы сохранения импульса и энергии запишутся как
Описание слайда:
Для указанного на рисунке случая абсолютно упругого удара законы сохранения импульса и энергии запишутся как Для указанного на рисунке случая абсолютно упругого удара законы сохранения импульса и энергии запишутся как

Слайд 40





Рисунок иллюстрирует абсолютно упругий удар шаров разной массы. 
Рисунок иллюстрирует абсолютно упругий удар шаров разной массы. 
После удара изменились направления движения шаров. 
При одинаковой массе шаров получается игра в билльярд.
Описание слайда:
Рисунок иллюстрирует абсолютно упругий удар шаров разной массы. Рисунок иллюстрирует абсолютно упругий удар шаров разной массы. После удара изменились направления движения шаров. При одинаковой массе шаров получается игра в билльярд.

Слайд 41





Частные случаи
Частные случаи
Сталкиваются шары массами m1 и m2.
Скорости шаров до удара: V1 и V2.
Скорости шаров после удара: U1 и U2 .
Шары с одинаковыми массами (m1= m2) обмениваются энергией: 
                  U1 = V2 ;    U2 = V1 .
Описание слайда:
Частные случаи Частные случаи Сталкиваются шары массами m1 и m2. Скорости шаров до удара: V1 и V2. Скорости шаров после удара: U1 и U2 . Шары с одинаковыми массами (m1= m2) обмениваются энергией: U1 = V2 ; U2 = V1 .

Слайд 42





2. Шары с одинаковыми массами (m1= m2), но второй шар неподвижен (V2 = 0).
2. Шары с одинаковыми массами (m1= m2), но второй шар неподвижен (V2 = 0).
Происходит обмен импульсами: первый шар остановится, а второй будет двигаться со скоростью первого.
                                   U2 = V1 .
3. Столкновение шара со стеной (V2 = 0, m2 много больше m1 ): 
                                 U1 = -V1 .
Описание слайда:
2. Шары с одинаковыми массами (m1= m2), но второй шар неподвижен (V2 = 0). 2. Шары с одинаковыми массами (m1= m2), но второй шар неподвижен (V2 = 0). Происходит обмен импульсами: первый шар остановится, а второй будет двигаться со скоростью первого. U2 = V1 . 3. Столкновение шара со стеной (V2 = 0, m2 много больше m1 ): U1 = -V1 .

Слайд 43





Законы сохранения в микромире
Законы сохранения в микромире
В заключение темы отметим, что рассмотренные выше фундаментальные законы сохранения справедливы как в макромире, так и в микромире. 
В области  элементарных частиц количество законов сохранения увеличивается. 
Отметим среди них некоторые законы сохранения:
 
1. закон сохранения электрического заряда;
2. закон сохранения барионного заряда;
3. закон сохранения лептонного заряда;
4. закон сохранения чётности, странности, очарования и др.
Описание слайда:
Законы сохранения в микромире Законы сохранения в микромире В заключение темы отметим, что рассмотренные выше фундаментальные законы сохранения справедливы как в макромире, так и в микромире. В области элементарных частиц количество законов сохранения увеличивается. Отметим среди них некоторые законы сохранения: 1. закон сохранения электрического заряда; 2. закон сохранения барионного заряда; 3. закон сохранения лептонного заряда; 4. закон сохранения чётности, странности, очарования и др.

Слайд 44





Эти законы представляют собой равенство некоторых чисел на входе и выходе всевозможных превращений элементарных частиц.
Эти законы представляют собой равенство некоторых чисел на входе и выходе всевозможных превращений элементарных частиц.
Эти законы не связаны с фундаментальными свойствами пространства и времени.
Описание слайда:
Эти законы представляют собой равенство некоторых чисел на входе и выходе всевозможных превращений элементарных частиц. Эти законы представляют собой равенство некоторых чисел на входе и выходе всевозможных превращений элементарных частиц. Эти законы не связаны с фундаментальными свойствами пространства и времени.



Похожие презентации
Mypresentation.ru
Загрузить презентацию