🗊Презентация Электромагнитное излучение

Категория: Физика
Нажмите для полного просмотра!
Электромагнитное излучение, слайд №1Электромагнитное излучение, слайд №2Электромагнитное излучение, слайд №3Электромагнитное излучение, слайд №4Электромагнитное излучение, слайд №5Электромагнитное излучение, слайд №6Электромагнитное излучение, слайд №7Электромагнитное излучение, слайд №8Электромагнитное излучение, слайд №9Электромагнитное излучение, слайд №10Электромагнитное излучение, слайд №11Электромагнитное излучение, слайд №12Электромагнитное излучение, слайд №13Электромагнитное излучение, слайд №14Электромагнитное излучение, слайд №15Электромагнитное излучение, слайд №16Электромагнитное излучение, слайд №17Электромагнитное излучение, слайд №18Электромагнитное излучение, слайд №19

Вы можете ознакомиться и скачать презентацию на тему Электромагнитное излучение. Доклад-сообщение содержит 19 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Электромагнитное излучение
Описание слайда:
Электромагнитное излучение

Слайд 2





Электромагни́тное излуче́ние (электромагнитные волны)  — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).
Электромагни́тное излуче́ние (электромагнитные волны)  — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).
Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.
Описание слайда:
Электромагни́тное излуче́ние (электромагнитные волны)  — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей). Электромагни́тное излуче́ние (электромагнитные волны)  — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей). Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Слайд 3


Электромагнитное излучение, слайд №3
Описание слайда:

Слайд 4





1. Характеристики электромагнитного излучения
Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.
Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики. К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий.
Описание слайда:
1. Характеристики электромагнитного излучения Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики. К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий.

Слайд 5





2. Диапазоны электромагнитного излучения
Описание слайда:
2. Диапазоны электромагнитного излучения

Слайд 6





Электромагнитное излучение подразделяется на
2.1 Радиоволны
2.2 Инфракрасное излучение (тепловое)
2.3 Видимое излучение (оптическое)
2.4 Ультрафиолетовое излучение
2.5 Рентгеновское излучение
2.6 Гамма излучение
Описание слайда:
Электромагнитное излучение подразделяется на 2.1 Радиоволны 2.2 Инфракрасное излучение (тепловое) 2.3 Видимое излучение (оптическое) 2.4 Ультрафиолетовое излучение 2.5 Рентгеновское излучение 2.6 Гамма излучение

Слайд 7





2.1 Радиово́лны 
Радиово́лны — электромагнитные волны с частотами до 3 ТГц, распространяющиеся в пространстве без искусственного волновода. Радиоволны в электромагнитном спектре располагаются от крайне низких частот вплоть до инфракрасного диапазона
Описание слайда:
2.1 Радиово́лны  Радиово́лны — электромагнитные волны с частотами до 3 ТГц, распространяющиеся в пространстве без искусственного волновода. Радиоволны в электромагнитном спектре располагаются от крайне низких частот вплоть до инфракрасного диапазона

Слайд 8





2.2 Инфракрасное излучение
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны  λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2  мм, частота 300 ГГц).
Описание слайда:
2.2 Инфракрасное излучение Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны  λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2  мм, частота 300 ГГц).

Слайд 9





2.3  Видимое излучение
Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 ТГц), в зелёной части спектра.
Описание слайда:
2.3 Видимое излучение Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 ТГц), в зелёной части спектра.

Слайд 10





2.4 Ультрафиолетовое излучение
Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение)  — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями.
Описание слайда:
2.4 Ультрафиолетовое излучение Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение)  — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями.

Слайд 11





2.5 Рентгеновское излучение
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением.
Описание слайда:
2.5 Рентгеновское излучение Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением.

Слайд 12





2.6 Гамма излучение
Га́мма-излуче́ние — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2·10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами
Описание слайда:
2.6 Гамма излучение Га́мма-излуче́ние — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2·10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами

Слайд 13





3. Особенности электромагнитного излучения разных диапазонов
Описание слайда:
3. Особенности электромагнитного излучения разных диапазонов

Слайд 14





Распространение электромагнитных волн, временны́е зависимости электрического  и магнитного  полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды.
Распространение электромагнитных волн, временны́е зависимости электрического  и магнитного  полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды.
Электромагнитные излучения различных частот взаимодействуют с веществом также по-разному. Процессы излучения и поглощения радиоволнобычно можно описать с помощью соотношений классической электродинамики; а вот для волн оптического диапазона и, тем более, жестких лучей необходимо учитывать уже их квантовую природу.
Описание слайда:
Распространение электромагнитных волн, временны́е зависимости электрического  и магнитного  полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды. Распространение электромагнитных волн, временны́е зависимости электрического  и магнитного  полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды. Электромагнитные излучения различных частот взаимодействуют с веществом также по-разному. Процессы излучения и поглощения радиоволнобычно можно описать с помощью соотношений классической электродинамики; а вот для волн оптического диапазона и, тем более, жестких лучей необходимо учитывать уже их квантовую природу.

Слайд 15





4. История исследований
Описание слайда:
4. История исследований

Слайд 16





Первые волновые теории света (их можно считать старейшими вариантами теорий электромагнитного излучения) восходят по меньшей мере к временам Гюйгенса, когда они получили уже и заметное количественное развитие. В 1678 году Гюйгенс выпустил «Трактат о свете» — набросок волновой теории света.
Первые волновые теории света (их можно считать старейшими вариантами теорий электромагнитного излучения) восходят по меньшей мере к временам Гюйгенса, когда они получили уже и заметное количественное развитие. В 1678 году Гюйгенс выпустил «Трактат о свете» — набросок волновой теории света.
В 1800 году английский учёный У. Гершель открыл инфракрасное излучение.
В 1801 году Риттер открыл ультрафиолетовое излучение.
Существование электромагнитных волн предсказал английский физик Фарадей в 1832 году.
В 1865 году английский физик Дж. Максвелл завершил построение теории электромагнитного поля классической (неквантовой) физики, строго оформив её математически, и на ее основе получив твердое обоснование существования электромагнитных волн, а также найдя скорость их распространения (неплохо совпадавшую с известным тогда значением скорости света), что позволило ему обосновать и предположение о том, что свет является электромагнитной волной.
Описание слайда:
Первые волновые теории света (их можно считать старейшими вариантами теорий электромагнитного излучения) восходят по меньшей мере к временам Гюйгенса, когда они получили уже и заметное количественное развитие. В 1678 году Гюйгенс выпустил «Трактат о свете» — набросок волновой теории света. Первые волновые теории света (их можно считать старейшими вариантами теорий электромагнитного излучения) восходят по меньшей мере к временам Гюйгенса, когда они получили уже и заметное количественное развитие. В 1678 году Гюйгенс выпустил «Трактат о свете» — набросок волновой теории света. В 1800 году английский учёный У. Гершель открыл инфракрасное излучение. В 1801 году Риттер открыл ультрафиолетовое излучение. Существование электромагнитных волн предсказал английский физик Фарадей в 1832 году. В 1865 году английский физик Дж. Максвелл завершил построение теории электромагнитного поля классической (неквантовой) физики, строго оформив её математически, и на ее основе получив твердое обоснование существования электромагнитных волн, а также найдя скорость их распространения (неплохо совпадавшую с известным тогда значением скорости света), что позволило ему обосновать и предположение о том, что свет является электромагнитной волной.

Слайд 17





В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём.
В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём.
8 ноября 1895  года Рентген открыл электромагнитное излучение (получившее впоследствии название рентгеновского) более коротковолнового диапазона, чем ультрафиолетовое.
В 1900 году Поль Виллард при изучении излучения радия открыл гамма-излучение.
Начиная с 1905 года Эйнштейн, а затем и Планк публикуют ряд работ, приведших к формированию понятия фотона, что стало началом создания квантовой теории электромагнитного излучения.
Дальнейшие работы по квантовой теории излучения и его взаимодействия с веществом, приведшие в итоге к формированию квантовой электродинамики в ее современном виде, принадлежат ряду ведущих физиков середины XX века, среди которых можно выделить, применительно именно к вопросу квантования электромагнитного излучения и его взаимодействия с веществом, кроме Планка и Эйнштейна, Бозе, Бора, Гейзенберга, де Бройля, Дирака, Фейнмана, Швингера, Томонагу.
Описание слайда:
В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём. В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём. 8 ноября 1895  года Рентген открыл электромагнитное излучение (получившее впоследствии название рентгеновского) более коротковолнового диапазона, чем ультрафиолетовое. В 1900 году Поль Виллард при изучении излучения радия открыл гамма-излучение. Начиная с 1905 года Эйнштейн, а затем и Планк публикуют ряд работ, приведших к формированию понятия фотона, что стало началом создания квантовой теории электромагнитного излучения. Дальнейшие работы по квантовой теории излучения и его взаимодействия с веществом, приведшие в итоге к формированию квантовой электродинамики в ее современном виде, принадлежат ряду ведущих физиков середины XX века, среди которых можно выделить, применительно именно к вопросу квантования электромагнитного излучения и его взаимодействия с веществом, кроме Планка и Эйнштейна, Бозе, Бора, Гейзенберга, де Бройля, Дирака, Фейнмана, Швингера, Томонагу.

Слайд 18





5. Электромагнитная безопасность
Описание слайда:
5. Электромагнитная безопасность

Слайд 19





Излучения электромагнитного диапазона при определённых уровнях могут оказывать отрицательное воздействие на организм человека, животных и других живых существ, а также неблагоприятно влиять на работу электрических приборов. Различные виды неионизирующих излучений (электромагнитных полей, ЭМП) оказывают разное физиологическое воздействие. На практике выделяют диапазоны магнитного поля (постоянного и квазипостоянного, импульсного), ВЧ- и СВЧ-излучений, лазерного излучения, электрического и магнитного поля промышленной частоты от высоковольтного оборудования, СВЧ-излучения и др.
Излучения электромагнитного диапазона при определённых уровнях могут оказывать отрицательное воздействие на организм человека, животных и других живых существ, а также неблагоприятно влиять на работу электрических приборов. Различные виды неионизирующих излучений (электромагнитных полей, ЭМП) оказывают разное физиологическое воздействие. На практике выделяют диапазоны магнитного поля (постоянного и квазипостоянного, импульсного), ВЧ- и СВЧ-излучений, лазерного излучения, электрического и магнитного поля промышленной частоты от высоковольтного оборудования, СВЧ-излучения и др.
Описание слайда:
Излучения электромагнитного диапазона при определённых уровнях могут оказывать отрицательное воздействие на организм человека, животных и других живых существ, а также неблагоприятно влиять на работу электрических приборов. Различные виды неионизирующих излучений (электромагнитных полей, ЭМП) оказывают разное физиологическое воздействие. На практике выделяют диапазоны магнитного поля (постоянного и квазипостоянного, импульсного), ВЧ- и СВЧ-излучений, лазерного излучения, электрического и магнитного поля промышленной частоты от высоковольтного оборудования, СВЧ-излучения и др. Излучения электромагнитного диапазона при определённых уровнях могут оказывать отрицательное воздействие на организм человека, животных и других живых существ, а также неблагоприятно влиять на работу электрических приборов. Различные виды неионизирующих излучений (электромагнитных полей, ЭМП) оказывают разное физиологическое воздействие. На практике выделяют диапазоны магнитного поля (постоянного и квазипостоянного, импульсного), ВЧ- и СВЧ-излучений, лазерного излучения, электрического и магнитного поля промышленной частоты от высоковольтного оборудования, СВЧ-излучения и др.



Похожие презентации
Mypresentation.ru
Загрузить презентацию