🗊Презентация Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі

Категория: Физика
Нажмите для полного просмотра!
Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №1Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №2Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №3Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №4Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №5Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №6Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №7Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №8Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №9Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №10Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №11Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №12Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №13Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №14Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №15Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №16Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №17Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №18Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №19

Вы можете ознакомиться и скачать презентацию на тему Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі. Доклад-сообщение содержит 19 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1






                                                                  
Тақырыбы: 
  Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі
                                 
                                                     Орындаған: Мақсұт Нұрлы
                                                     Факультет: ҚДС 15-001-02
                                                                   Курс: 3 
                                                                    Тексерген: Ниязбекова Л.С.
Описание слайда:
Тақырыбы: Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі Орындаған: Мақсұт Нұрлы Факультет: ҚДС 15-001-02 Курс: 3 Тексерген: Ниязбекова Л.С.

Слайд 2





Кіріспе

 Иондаушы сәулелердің табиғи көздерінің бірі ғарыштық сәулелер болып табылады. Зарядты бөлшек үдеткіштері жасалғанға дейін ғарыштық сәулелер жоғары энергиялы иондаушы бөлшектердің бірден – бір көзі болды.
  Ғарыштық сәулелерді зерттеу арқылы оның құрамындағы бөлшектердің үдетілу жолдары анықталып кейбір атмосфералық процестерді түсіндіруге болады. Сондықтан  ғарыштық сәулелерді иондаушы сәулелердің көзі ретінде қарастырып олардың бағытын анықтау көкейкесті мәселелердің бірі болып саналады.
 «Ғарыштық сәулелер» термині Гесса жүмысымен байланысты пайда болды, эртүрлі бөліктерде ауаның иондалу деңгейін зерттеген.
Описание слайда:
Кіріспе Иондаушы сәулелердің табиғи көздерінің бірі ғарыштық сәулелер болып табылады. Зарядты бөлшек үдеткіштері жасалғанға дейін ғарыштық сәулелер жоғары энергиялы иондаушы бөлшектердің бірден – бір көзі болды. Ғарыштық сәулелерді зерттеу арқылы оның құрамындағы бөлшектердің үдетілу жолдары анықталып кейбір атмосфералық процестерді түсіндіруге болады. Сондықтан ғарыштық сәулелерді иондаушы сәулелердің көзі ретінде қарастырып олардың бағытын анықтау көкейкесті мәселелердің бірі болып саналады. «Ғарыштық сәулелер» термині Гесса жүмысымен байланысты пайда болды, эртүрлі бөліктерде ауаның иондалу деңгейін зерттеген.

Слайд 3





      
      
 Осы тәжірибеге дейін бірнеше уақыт бұрын жер бетінде ауа иондалады деп тұжырымдалған. Секунд сайын орташа есеппен 1см3-та 1 жүп ион түзіледі. Бүндай иондалудың себебі жөнінде сұрақ пайда болды. Болжам, ол радиоактивті заттарды сәулелендіріп жасалады, жекелей алғанда радон, оның іздері ауада болады, иондалу өзгертілмей сақталатыны анықталды және құрғақ ауа жабық ыдысқа орналасқанда онда бірнеше уақыт сақталады. Иондалудың азаятыны да анықталған, бірақ толығымен жоғалмайды, тұйық ыдыс 2,5 см жуандықтағы мырыш қабығымен қапталғанда. Бұл иондаушы сәуле көзі жабық ыдыс сыртында болатын болжамды дэлелдеді. Ал сэуленің өзі ү-сәулеге ұқсас, мырыш қабатынан өте алады. Бұл сәуленің көзі радиоактивті зат болады ма, жоқ па анықтау үшін Гюкель және Гесс ауаның иондалу тиімділігіне өлшеу жүргізді.
Описание слайда:
Осы тәжірибеге дейін бірнеше уақыт бұрын жер бетінде ауа иондалады деп тұжырымдалған. Секунд сайын орташа есеппен 1см3-та 1 жүп ион түзіледі. Бүндай иондалудың себебі жөнінде сұрақ пайда болды. Болжам, ол радиоактивті заттарды сәулелендіріп жасалады, жекелей алғанда радон, оның іздері ауада болады, иондалу өзгертілмей сақталатыны анықталды және құрғақ ауа жабық ыдысқа орналасқанда онда бірнеше уақыт сақталады. Иондалудың азаятыны да анықталған, бірақ толығымен жоғалмайды, тұйық ыдыс 2,5 см жуандықтағы мырыш қабығымен қапталғанда. Бұл иондаушы сәуле көзі жабық ыдыс сыртында болатын болжамды дэлелдеді. Ал сэуленің өзі ү-сәулеге ұқсас, мырыш қабатынан өте алады. Бұл сәуленің көзі радиоактивті зат болады ма, жоқ па анықтау үшін Гюкель және Гесс ауаның иондалу тиімділігіне өлшеу жүргізді.

Слайд 4





Егер иондалу радиоактивті заттар есебінен жасалған болса, онда жерден бұл сәуленің тиімділігін жою мөлшері бойынша, ал нәтижесінде олардың иондалу деңгейі доғарады. Бірақ та өлшеу нәтижесі кездейсоқ болып шықты.
Иондалу тиімділігінің азаюы бірінші 1000 метрге көтерілгенде ғана байқалады, эрі қарай көтергенде азаю емес, тиімділіктің үлғаюы байқалады жэне 5000 м биіктікте иондалу үш есе көп болып шықты, жер бетіндегімен салыстырғанда.
 Осы зерттеу нәтижесінде, жер бетіндегі ауаның иондалуы оның радиоактивті сәуле бөлуі арқылы ғана жүретіні жөнінде тұжырым жасалды, жекелей алғанда ол ғарыштан жерге өтетін жерден тыс түзілістің күші енетін сәуле әсерімен негізделген. Бұл сәулелер ғарыштық сәулелер деген атау алды.

Егер иондалу радиоактивті заттар есебінен жасалған болса, онда жерден бұл сәуленің тиімділігін жою мөлшері бойынша, ал нәтижесінде олардың иондалу деңгейі доғарады. Бірақ та өлшеу нәтижесі кездейсоқ болып шықты.
Иондалу тиімділігінің азаюы бірінші 1000 метрге көтерілгенде ғана байқалады, эрі қарай көтергенде азаю емес, тиімділіктің үлғаюы байқалады жэне 5000 м биіктікте иондалу үш есе көп болып шықты, жер бетіндегімен салыстырғанда.
 Осы зерттеу нәтижесінде, жер бетіндегі ауаның иондалуы оның радиоактивті сәуле бөлуі арқылы ғана жүретіні жөнінде тұжырым жасалды, жекелей алғанда ол ғарыштан жерге өтетін жерден тыс түзілістің күші енетін сәуле әсерімен негізделген. Бұл сәулелер ғарыштық сәулелер деген атау алды.
Описание слайда:
Егер иондалу радиоактивті заттар есебінен жасалған болса, онда жерден бұл сәуленің тиімділігін жою мөлшері бойынша, ал нәтижесінде олардың иондалу деңгейі доғарады. Бірақ та өлшеу нәтижесі кездейсоқ болып шықты. Иондалу тиімділігінің азаюы бірінші 1000 метрге көтерілгенде ғана байқалады, эрі қарай көтергенде азаю емес, тиімділіктің үлғаюы байқалады жэне 5000 м биіктікте иондалу үш есе көп болып шықты, жер бетіндегімен салыстырғанда. Осы зерттеу нәтижесінде, жер бетіндегі ауаның иондалуы оның радиоактивті сәуле бөлуі арқылы ғана жүретіні жөнінде тұжырым жасалды, жекелей алғанда ол ғарыштан жерге өтетін жерден тыс түзілістің күші енетін сәуле әсерімен негізделген. Бұл сәулелер ғарыштық сәулелер деген атау алды. Егер иондалу радиоактивті заттар есебінен жасалған болса, онда жерден бұл сәуленің тиімділігін жою мөлшері бойынша, ал нәтижесінде олардың иондалу деңгейі доғарады. Бірақ та өлшеу нәтижесі кездейсоқ болып шықты. Иондалу тиімділігінің азаюы бірінші 1000 метрге көтерілгенде ғана байқалады, эрі қарай көтергенде азаю емес, тиімділіктің үлғаюы байқалады жэне 5000 м биіктікте иондалу үш есе көп болып шықты, жер бетіндегімен салыстырғанда. Осы зерттеу нәтижесінде, жер бетіндегі ауаның иондалуы оның радиоактивті сәуле бөлуі арқылы ғана жүретіні жөнінде тұжырым жасалды, жекелей алғанда ол ғарыштан жерге өтетін жерден тыс түзілістің күші енетін сәуле әсерімен негізделген. Бұл сәулелер ғарыштық сәулелер деген атау алды.

Слайд 5





  
  
Иондаушы бөлшектердің заттармен өзара әсерлесуі.

Иондаушы бөлшектердің түрлері.
  Иондаушы сәулелер деп- электрон, протон, нейтрон, α - бөлшек, мезон, фотон және т.б. қарапайым бөлшектер ағынын айтамыз. 
Бөлшекетердің заттың атомындағы электрон немесе ядромен өзара әсерлесуі кулондық, электромагниттік, ядролық күштер арқылы жүзеге асады.
        Бұл әсерлесулер нәтижесінде болатын серпімді және серпімсіз соқтығысулар нәтижесінде өте көп процестер туындайды. Осы тұрғыда иондаушы бөлшектердің заттармен өзара әсерлесуін төрт топқа
 - зарядталған ауыр бөлшектерден
 - зарядталған жеңіл бөлшектермен, 
фотондармен және нейтрондармен - деп бөлеміз.
Описание слайда:
Иондаушы бөлшектердің заттармен өзара әсерлесуі. Иондаушы бөлшектердің түрлері. Иондаушы сәулелер деп- электрон, протон, нейтрон, α - бөлшек, мезон, фотон және т.б. қарапайым бөлшектер ағынын айтамыз. Бөлшекетердің заттың атомындағы электрон немесе ядромен өзара әсерлесуі кулондық, электромагниттік, ядролық күштер арқылы жүзеге асады. Бұл әсерлесулер нәтижесінде болатын серпімді және серпімсіз соқтығысулар нәтижесінде өте көп процестер туындайды. Осы тұрғыда иондаушы бөлшектердің заттармен өзара әсерлесуін төрт топқа - зарядталған ауыр бөлшектерден - зарядталған жеңіл бөлшектермен, фотондармен және нейтрондармен - деп бөлеміз.

Слайд 6





Иондаушы бөлшектердің заттарда бірлік ұзындыққа жүргенде шығындалған энергиясы тежелу қабілеті деп аталады. Егер бөлшектің затта жүру жолының ұзындығын  г / см2 – бірлікте өлшейтін болсақ тежелу қабілеті заттың агрегаттық күйіне тәуелді болмайды. Заттарда жұтылған энергия сол ортада әртүрлі физикалық құбылыстар тудырады. Сол туындаған құбылыстарды иондаушы бөлшектерді тіркеу үшін пайдалануға болады. Жұтылған энергияның ортада миграциясы және оның нәтижесінде туындайтын әртүрлі құбылыстардың болуы заттың агрегаттық күйіне тәуелді болады. Мысалы, газдарға зарядталған бөлшектер енгенде еркін электрон және иондар туындайды.Соның нәтижесінде газдың электрлік кедергісі өзгереді.Кейбір кристалдарға иондаушы бөлшектер түскен  кезде жарық фотондарын шығарады.  Иондаушы  бөлшектердің  заттармен  өзара  әсерлесуі   нәтижесінде 
 туындайтын осындай әртүрлі процестерді бақылау арқылы оларды тіркеуге болады.  

Иондаушы бөлшектердің заттарда бірлік ұзындыққа жүргенде шығындалған энергиясы тежелу қабілеті деп аталады. Егер бөлшектің затта жүру жолының ұзындығын  г / см2 – бірлікте өлшейтін болсақ тежелу қабілеті заттың агрегаттық күйіне тәуелді болмайды. Заттарда жұтылған энергия сол ортада әртүрлі физикалық құбылыстар тудырады. Сол туындаған құбылыстарды иондаушы бөлшектерді тіркеу үшін пайдалануға болады. Жұтылған энергияның ортада миграциясы және оның нәтижесінде туындайтын әртүрлі құбылыстардың болуы заттың агрегаттық күйіне тәуелді болады. Мысалы, газдарға зарядталған бөлшектер енгенде еркін электрон және иондар туындайды.Соның нәтижесінде газдың электрлік кедергісі өзгереді.Кейбір кристалдарға иондаушы бөлшектер түскен  кезде жарық фотондарын шығарады.  Иондаушы  бөлшектердің  заттармен  өзара  әсерлесуі   нәтижесінде 
 туындайтын осындай әртүрлі процестерді бақылау арқылы оларды тіркеуге болады.
Описание слайда:
Иондаушы бөлшектердің заттарда бірлік ұзындыққа жүргенде шығындалған энергиясы тежелу қабілеті деп аталады. Егер бөлшектің затта жүру жолының ұзындығын г / см2 – бірлікте өлшейтін болсақ тежелу қабілеті заттың агрегаттық күйіне тәуелді болмайды. Заттарда жұтылған энергия сол ортада әртүрлі физикалық құбылыстар тудырады. Сол туындаған құбылыстарды иондаушы бөлшектерді тіркеу үшін пайдалануға болады. Жұтылған энергияның ортада миграциясы және оның нәтижесінде туындайтын әртүрлі құбылыстардың болуы заттың агрегаттық күйіне тәуелді болады. Мысалы, газдарға зарядталған бөлшектер енгенде еркін электрон және иондар туындайды.Соның нәтижесінде газдың электрлік кедергісі өзгереді.Кейбір кристалдарға иондаушы бөлшектер түскен кезде жарық фотондарын шығарады. Иондаушы бөлшектердің заттармен өзара әсерлесуі нәтижесінде  туындайтын осындай әртүрлі процестерді бақылау арқылы оларды тіркеуге болады. Иондаушы бөлшектердің заттарда бірлік ұзындыққа жүргенде шығындалған энергиясы тежелу қабілеті деп аталады. Егер бөлшектің затта жүру жолының ұзындығын г / см2 – бірлікте өлшейтін болсақ тежелу қабілеті заттың агрегаттық күйіне тәуелді болмайды. Заттарда жұтылған энергия сол ортада әртүрлі физикалық құбылыстар тудырады. Сол туындаған құбылыстарды иондаушы бөлшектерді тіркеу үшін пайдалануға болады. Жұтылған энергияның ортада миграциясы және оның нәтижесінде туындайтын әртүрлі құбылыстардың болуы заттың агрегаттық күйіне тәуелді болады. Мысалы, газдарға зарядталған бөлшектер енгенде еркін электрон және иондар туындайды.Соның нәтижесінде газдың электрлік кедергісі өзгереді.Кейбір кристалдарға иондаушы бөлшектер түскен кезде жарық фотондарын шығарады. Иондаушы бөлшектердің заттармен өзара әсерлесуі нәтижесінде  туындайтын осындай әртүрлі процестерді бақылау арқылы оларды тіркеуге болады.

Слайд 7





   
   
Зарядталған ауыр бөлшектердің заттарда жұтылуы.
Зарядтары аз болған (Z = 1, 2) ауыр бөлшектер заттармен өзара әсерлескенде олардың энергия шығыны, негізінен, заттың атомдарымен серпімсіз кулондық соқтығысуы нәтижесінде туындайды. Серпімсіз соқтығысу нәтижесінде заттың атомы иондалады немесе қозған күйге өтеді. Бұл процесс үздіксіз болатындықтан зарядталған бөлшектің энергиясы да үздіксіз кемиді.
        Зарядталған бөлшектердің атом ядросымен серпімді соқтығысуы нәтижесіндегі энергия шығыны иондауға кеткен энергиямен салыстырғанда өте аз болады. Егер иондаушы бөлшек энергиясы ядроның потенциялдық тосқауылынан үлкен болса бөлшектің энергия шығыны да үлкен болады. Мысалы, протон графитпен өзара әсерлескенде оның энергиясы 30 МэВ - тен, ал α - бөлшек үшін  100 МэВ - тен жоғары болғанда атом ядросымен соқтығысу кезіндегі энергия шығыны ескеретіндей шамаға ие болады.
Описание слайда:
Зарядталған ауыр бөлшектердің заттарда жұтылуы. Зарядтары аз болған (Z = 1, 2) ауыр бөлшектер заттармен өзара әсерлескенде олардың энергия шығыны, негізінен, заттың атомдарымен серпімсіз кулондық соқтығысуы нәтижесінде туындайды. Серпімсіз соқтығысу нәтижесінде заттың атомы иондалады немесе қозған күйге өтеді. Бұл процесс үздіксіз болатындықтан зарядталған бөлшектің энергиясы да үздіксіз кемиді. Зарядталған бөлшектердің атом ядросымен серпімді соқтығысуы нәтижесіндегі энергия шығыны иондауға кеткен энергиямен салыстырғанда өте аз болады. Егер иондаушы бөлшек энергиясы ядроның потенциялдық тосқауылынан үлкен болса бөлшектің энергия шығыны да үлкен болады. Мысалы, протон графитпен өзара әсерлескенде оның энергиясы 30 МэВ - тен, ал α - бөлшек үшін 100 МэВ - тен жоғары болғанда атом ядросымен соқтығысу кезіндегі энергия шығыны ескеретіндей шамаға ие болады.

Слайд 8





 1 - суретке әртүрлі бөлшектер үшін ауаның тежеу қабілетінің энергияға тәуелділігі  келтірілген. Суреттен,  зарядтары  бірдей  болған  бөлшектердің (протон, дейтон, мейзон) энергиялары жүздеген МэВ - тен жоғары болған кезде олардың тежеу қабілеттері бірдей болып тұрақты болатындығын көреміз.
  
 1 - суретке әртүрлі бөлшектер үшін ауаның тежеу қабілетінің энергияға тәуелділігі  келтірілген. Суреттен,  зарядтары  бірдей  болған  бөлшектердің (протон, дейтон, мейзон) энергиялары жүздеген МэВ - тен жоғары болған кезде олардың тежеу қабілеттері бірдей болып тұрақты болатындығын көреміз.
Описание слайда:
1 - суретке әртүрлі бөлшектер үшін ауаның тежеу қабілетінің энергияға тәуелділігі келтірілген. Суреттен, зарядтары бірдей болған бөлшектердің (протон, дейтон, мейзон) энергиялары жүздеген МэВ - тен жоғары болған кезде олардың тежеу қабілеттері бірдей болып тұрақты болатындығын көреміз. 1 - суретке әртүрлі бөлшектер үшін ауаның тежеу қабілетінің энергияға тәуелділігі келтірілген. Суреттен, зарядтары бірдей болған бөлшектердің (протон, дейтон, мейзон) энергиялары жүздеген МэВ - тен жоғары болған кезде олардың тежеу қабілеттері бірдей болып тұрақты болатындығын көреміз.

Слайд 9





β - бөлшектердің заттармен өзара әсерлесуі.
Төмен энергиялы электрондар (2 - МэВ) заттардан өткен кезде, ауыр зарядталған бөлшектер секілді, зат атомдарының электрондарын ионизациялайды немесе қозған күйге келтіреді. Бірақ ауыр зарядталған бөлшектерден ерекшелігі электрондар бір рет атомен соқтығысуы нәтижесінде энергиясының көп мөлшерін жоғалтып,  үлкен бұрышқа ауытқиды. Сондықтан электрондардың заттардағы жүру жолының ұзындығы мен оның бағыты әртүрлі болады. Егер электрон энергиясы үлен болатын болса, оның атом ядросының өрісінде тежелуі нәтижесінде  қосымша радиациялық сәулеленуі үшін энергия шығыны туындайды. Сонымен электрондардың заттармен әсерлесуі кезінде оның энергиясының  шығыны ионизациялауға және радиациялық  сәулеленуге жұмсалады.

β - бөлшектердің заттармен өзара әсерлесуі.
Төмен энергиялы электрондар (2 - МэВ) заттардан өткен кезде, ауыр зарядталған бөлшектер секілді, зат атомдарының электрондарын ионизациялайды немесе қозған күйге келтіреді. Бірақ ауыр зарядталған бөлшектерден ерекшелігі электрондар бір рет атомен соқтығысуы нәтижесінде энергиясының көп мөлшерін жоғалтып,  үлкен бұрышқа ауытқиды. Сондықтан электрондардың заттардағы жүру жолының ұзындығы мен оның бағыты әртүрлі болады. Егер электрон энергиясы үлен болатын болса, оның атом ядросының өрісінде тежелуі нәтижесінде  қосымша радиациялық сәулеленуі үшін энергия шығыны туындайды. Сонымен электрондардың заттармен әсерлесуі кезінде оның энергиясының  шығыны ионизациялауға және радиациялық  сәулеленуге жұмсалады.
Описание слайда:
β - бөлшектердің заттармен өзара әсерлесуі. Төмен энергиялы электрондар (2 - МэВ) заттардан өткен кезде, ауыр зарядталған бөлшектер секілді, зат атомдарының электрондарын ионизациялайды немесе қозған күйге келтіреді. Бірақ ауыр зарядталған бөлшектерден ерекшелігі электрондар бір рет атомен соқтығысуы нәтижесінде энергиясының көп мөлшерін жоғалтып, үлкен бұрышқа ауытқиды. Сондықтан электрондардың заттардағы жүру жолының ұзындығы мен оның бағыты әртүрлі болады. Егер электрон энергиясы үлен болатын болса, оның атом ядросының өрісінде тежелуі нәтижесінде қосымша радиациялық сәулеленуі үшін энергия шығыны туындайды. Сонымен электрондардың заттармен әсерлесуі кезінде оның энергиясының шығыны ионизациялауға және радиациялық сәулеленуге жұмсалады. β - бөлшектердің заттармен өзара әсерлесуі. Төмен энергиялы электрондар (2 - МэВ) заттардан өткен кезде, ауыр зарядталған бөлшектер секілді, зат атомдарының электрондарын ионизациялайды немесе қозған күйге келтіреді. Бірақ ауыр зарядталған бөлшектерден ерекшелігі электрондар бір рет атомен соқтығысуы нәтижесінде энергиясының көп мөлшерін жоғалтып, үлкен бұрышқа ауытқиды. Сондықтан электрондардың заттардағы жүру жолының ұзындығы мен оның бағыты әртүрлі болады. Егер электрон энергиясы үлен болатын болса, оның атом ядросының өрісінде тежелуі нәтижесінде қосымша радиациялық сәулеленуі үшін энергия шығыны туындайды. Сонымен электрондардың заттармен әсерлесуі кезінде оның энергиясының шығыны ионизациялауға және радиациялық сәулеленуге жұмсалады.

Слайд 10







    γ – сәулеленудің заттардан өтуі.
 
Сәулелер заттан өтуі кезінде γ – кванттардың энергиясы, бөлшектердегі сияқты үздіксіз кеміп отырмастан, бір соқтығысу кезінде толығымен (жұтылу процесі) немесе оның көп бөлігі (шашырау процесі) шығындалады. 
Шашырау процесінде γ – квант энергиясы өзгерумен қатар оның бағыты да өзгереді.
Описание слайда:
γ – сәулеленудің заттардан өтуі.   Сәулелер заттан өтуі кезінде γ – кванттардың энергиясы, бөлшектердегі сияқты үздіксіз кеміп отырмастан, бір соқтығысу кезінде толығымен (жұтылу процесі) немесе оның көп бөлігі (шашырау процесі) шығындалады. Шашырау процесінде γ – квант энергиясы өзгерумен қатар оның бағыты да өзгереді.

Слайд 11






 γ – сәулесінің заттан өткендегі ағынының кемуі экспонента бойынша болғандықтан γ – кванттардың қалыңдығы өте үлкен заттардан өту ықтималдылығы нөлден өзгеше болады. Сондықтан жеке γ – кванттардың жүру жолы олардың орташа мәнінен әлдеқайда өзгеше болуы мүмкін. Заттың жұтылу коэфицентінің физикалық мағынасы: γ – квант ағыны  1 / μ  жол жүргенде оның интенсивтілігіне е есе кемиді. Сонымен 1/μ шама γ – кванттың заттағы орташа еркін жүру жолын сипаттайды. Егер γ – кванттың ортаның бір атомы мен әсерлесуінің толық қимасын σ деп белгілесек: μ  =  σ N
болады. Мұндағы N заттың 1 см2 көлеміндегі атомдар саны.
Описание слайда:
γ – сәулесінің заттан өткендегі ағынының кемуі экспонента бойынша болғандықтан γ – кванттардың қалыңдығы өте үлкен заттардан өту ықтималдылығы нөлден өзгеше болады. Сондықтан жеке γ – кванттардың жүру жолы олардың орташа мәнінен әлдеқайда өзгеше болуы мүмкін. Заттың жұтылу коэфицентінің физикалық мағынасы: γ – квант ағыны 1 / μ жол жүргенде оның интенсивтілігіне е есе кемиді. Сонымен 1/μ шама γ – кванттың заттағы орташа еркін жүру жолын сипаттайды. Егер γ – кванттың ортаның бір атомы мен әсерлесуінің толық қимасын σ деп белгілесек: μ = σ N болады. Мұндағы N заттың 1 см2 көлеміндегі атомдар саны.

Слайд 12


Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №12
Описание слайда:

Слайд 13


Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №13
Описание слайда:

Слайд 14


Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №14
Описание слайда:

Слайд 15


Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №15
Описание слайда:

Слайд 16


Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №16
Описание слайда:

Слайд 17


Әр түрлі иондаушы сәулелер көздері түрлерінің заттармен өзара әсерлесуі, слайд №17
Описание слайда:

Слайд 18





                           
                           
                             Қорытынды
 Иондаушы сәулелердің табиғи көзі ғарыштық сәулелер. Бастапқы ғарыштық сәулелердің құрамында 90 % - тей протондар, 7 % - ке жуық α – бөлшектер және 1 % - жуық басқа элемент ядролары болады. Бастапқы ғарыштық сәулелер құрамындағы жоғары энергиялы бөлшектер жер атмосферасындағы атом ядроларымен соқтығысуы нәтижесінде тұрақсыз элементар бөлшектер туындайды.
        Ғарыштық сәулелердің бағыты бойынша таралуын анықтау үшін бір вертикал осьте орналасқан екі Гейгер санауышын телескоп ретінде қолдануға болады.
Описание слайда:
Қорытынды Иондаушы сәулелердің табиғи көзі ғарыштық сәулелер. Бастапқы ғарыштық сәулелердің құрамында 90 % - тей протондар, 7 % - ке жуық α – бөлшектер және 1 % - жуық басқа элемент ядролары болады. Бастапқы ғарыштық сәулелер құрамындағы жоғары энергиялы бөлшектер жер атмосферасындағы атом ядроларымен соқтығысуы нәтижесінде тұрақсыз элементар бөлшектер туындайды. Ғарыштық сәулелердің бағыты бойынша таралуын анықтау үшін бір вертикал осьте орналасқан екі Гейгер санауышын телескоп ретінде қолдануға болады.

Слайд 19





                        
                        
                               Әдебиеттер тізімі

1)  Корсунский В. Н. «Оптика, атомная и ядерная физика». М. 1970.
2) Абрамов А. И., и др. Осн. «Экспериментальных методов ядерной физики». М. Атомизат. 1980.
3) Зингер С. «Первичные космическое излучение и его временное вариации». М. 1975.
4) В. Л. Гинзбург «Происхождение космических лучей». М. 1969.
5) «Физика экспериментальных частиц и космических лучей». Под. Ред. Дж. Вильсона  М. 1969.
Описание слайда:
Әдебиеттер тізімі 1) Корсунский В. Н. «Оптика, атомная и ядерная физика». М. 1970. 2) Абрамов А. И., и др. Осн. «Экспериментальных методов ядерной физики». М. Атомизат. 1980. 3) Зингер С. «Первичные космическое излучение и его временное вариации». М. 1975. 4) В. Л. Гинзбург «Происхождение космических лучей». М. 1969. 5) «Физика экспериментальных частиц и космических лучей». Под. Ред. Дж. Вильсона М. 1969.



Похожие презентации
Mypresentation.ru
Загрузить презентацию