🗊Презентация Источники электроэнергии

Категория: Физика
Нажмите для полного просмотра!
Источники электроэнергии, слайд №1Источники электроэнергии, слайд №2Источники электроэнергии, слайд №3Источники электроэнергии, слайд №4Источники электроэнергии, слайд №5Источники электроэнергии, слайд №6Источники электроэнергии, слайд №7Источники электроэнергии, слайд №8Источники электроэнергии, слайд №9Источники электроэнергии, слайд №10Источники электроэнергии, слайд №11Источники электроэнергии, слайд №12Источники электроэнергии, слайд №13Источники электроэнергии, слайд №14Источники электроэнергии, слайд №15Источники электроэнергии, слайд №16Источники электроэнергии, слайд №17Источники электроэнергии, слайд №18

Вы можете ознакомиться и скачать презентацию на тему Источники электроэнергии. Доклад-сообщение содержит 18 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Источники электроэнергии
Описание слайда:
Источники электроэнергии

Слайд 2





Тепловые электростанции (ТЭС)
Тепловые электростанции (ТЭС), работающие на органическом топливе (уголь, мазут, газ, сланцы, торф), являются на сегодня основным видом используемых в России энергопроизводителей.
Выбор места размещения тепловых электростанций определяется в основном наличием в данном регионе природных и топливных ресурсов. Мощные ТЭС строятся, как правило, в местах добычи топливных ресурсов или недалеко от крупных центров нефтеперерабатывающей промышленности. Тепловые электростанции, на которых в качестве топлива используются местные виды горючего (сланец, торф, низкокалорийные и многозольные угли), стараются размещать согласно потребности в электроэнергии и, в тоже время, с учётом наличия тех или иных видов топливных ресурсов.
Электростанции, работающие на высококалорийном топливе, доставка которого к месту использования экономически целесообразна, размещаются обычно с учётом потребительского спроса на электроэнергию.
Описание слайда:
Тепловые электростанции (ТЭС) Тепловые электростанции (ТЭС), работающие на органическом топливе (уголь, мазут, газ, сланцы, торф), являются на сегодня основным видом используемых в России энергопроизводителей. Выбор места размещения тепловых электростанций определяется в основном наличием в данном регионе природных и топливных ресурсов. Мощные ТЭС строятся, как правило, в местах добычи топливных ресурсов или недалеко от крупных центров нефтеперерабатывающей промышленности. Тепловые электростанции, на которых в качестве топлива используются местные виды горючего (сланец, торф, низкокалорийные и многозольные угли), стараются размещать согласно потребности в электроэнергии и, в тоже время, с учётом наличия тех или иных видов топливных ресурсов. Электростанции, работающие на высококалорийном топливе, доставка которого к месту использования экономически целесообразна, размещаются обычно с учётом потребительского спроса на электроэнергию.

Слайд 3





Симферопольская ТЭС
Описание слайда:
Симферопольская ТЭС

Слайд 4





Гидроэлектростанции
Гидроэлектростанции представляют собой специальные сооружения, возведённые в местах перекрытия больших рек плотиной и использующие энергию падающей воды для вращения турбин электрогенератора. Этот способ получения электроэнергии является наиболее экологичным, поскольку обходится без сжигания тех или иных видов топлива и не оставляет никаких вредных отходов после себя.
Описание слайда:
Гидроэлектростанции Гидроэлектростанции представляют собой специальные сооружения, возведённые в местах перекрытия больших рек плотиной и использующие энергию падающей воды для вращения турбин электрогенератора. Этот способ получения электроэнергии является наиболее экологичным, поскольку обходится без сжигания тех или иных видов топлива и не оставляет никаких вредных отходов после себя.

Слайд 5





Гидроэлектростанция
Описание слайда:
Гидроэлектростанция

Слайд 6





Атомные электростанции (АЭС)
Атомные электростанции (АЭС) отличаются от тепловых лишь тем, что, если в ТЭС для нагрева воды и получения пара используется горючее топливо, то в АЭС источником нагрева воды служит энергия тепла, выделяемого в процессе ядерной реакции.
Описание слайда:
Атомные электростанции (АЭС) Атомные электростанции (АЭС) отличаются от тепловых лишь тем, что, если в ТЭС для нагрева воды и получения пара используется горючее топливо, то в АЭС источником нагрева воды служит энергия тепла, выделяемого в процессе ядерной реакции.

Слайд 7





Смоленская АЭС
Описание слайда:
Смоленская АЭС

Слайд 8





Электрогенераторы
Когда речь идет о постоянной необходимости источника электроэнергии в частном доме, электрогенератор на дизельном топливе считается оптимальным вариантом, благодаря своей надежности, экономичности и сниженной пожароопасности. Дизельный генератор более выгоден при каждодневной эксплуатации, чем его бензиновый «собрат», так как склонен к невысокому расходу топлива и требует меньших вложений в обслуживание. Однако, не все так «радужно», как кажется на первый взгляд — выхлопные газы, шум при работе и высокая цена заставляют многих задуматься, прежде чем приобрести данный тип альтернативного источника электроэнергии. Стоимость 5-ти киловаттного генератора начинается от 850 $.
Описание слайда:
Электрогенераторы Когда речь идет о постоянной необходимости источника электроэнергии в частном доме, электрогенератор на дизельном топливе считается оптимальным вариантом, благодаря своей надежности, экономичности и сниженной пожароопасности. Дизельный генератор более выгоден при каждодневной эксплуатации, чем его бензиновый «собрат», так как склонен к невысокому расходу топлива и требует меньших вложений в обслуживание. Однако, не все так «радужно», как кажется на первый взгляд — выхлопные газы, шум при работе и высокая цена заставляют многих задуматься, прежде чем приобрести данный тип альтернативного источника электроэнергии. Стоимость 5-ти киловаттного генератора начинается от 850 $.

Слайд 9





Электрогенератор
Описание слайда:
Электрогенератор

Слайд 10





Биогазовая установка
Альтернативным видом сырья, позволяющим отойти от традиционного использования природного газа и нефти в виде дизельного топлива и бензина, является биомасса. Дизельное биотопливо получают путем переработки жиров, полученных из семян масляных культур — сои и рапса. Биоэтанол, как альтернативу бензину, производят при помощи ферментации растительного сырья — кукурузы, свеклы, сахарного тростника и прочих культур. Исходя из научных исследований, самый перспективный источник биотоплива — водоросли, отлично аккумулирующие солнечную энергию. Они неприхотливы и способны превращаться в маслянистую биомассу, по своим свойствам схожую с сырой нефтью. Из тонны органических отходов выход биогаза может достичь 500 куб. метров.
Описание слайда:
Биогазовая установка Альтернативным видом сырья, позволяющим отойти от традиционного использования природного газа и нефти в виде дизельного топлива и бензина, является биомасса. Дизельное биотопливо получают путем переработки жиров, полученных из семян масляных культур — сои и рапса. Биоэтанол, как альтернативу бензину, производят при помощи ферментации растительного сырья — кукурузы, свеклы, сахарного тростника и прочих культур. Исходя из научных исследований, самый перспективный источник биотоплива — водоросли, отлично аккумулирующие солнечную энергию. Они неприхотливы и способны превращаться в маслянистую биомассу, по своим свойствам схожую с сырой нефтью. Из тонны органических отходов выход биогаза может достичь 500 куб. метров.

Слайд 11





Биогазовая установка
Описание слайда:
Биогазовая установка

Слайд 12





Ветрогенератор
В мире ширится использование ветрогенераторов в качестве альтернативных источников электроэнергии. Принцип работы ветряной установки состоит в преобразовании кинетической силы ветра в механическую энергию вращения ветротурбины, которая, в свою очередь, аккумулируется и трансформируется инвертором в переменный ток. Выработка электроэнергии и заряд аккумуляторов начинается при скорости ветра 2 м/с, а постоянный ветер силой не ниже 8 м/с в состоянии полностью обеспечить электроэнергией небольшой частный дом. К принципиальным недостаткам ветрогенераторов относят шум и вибрацию, сопровождающие вращение лопастей. По этой причине ветряные установки размещают на значительном расстоянии от жилья.
Описание слайда:
Ветрогенератор В мире ширится использование ветрогенераторов в качестве альтернативных источников электроэнергии. Принцип работы ветряной установки состоит в преобразовании кинетической силы ветра в механическую энергию вращения ветротурбины, которая, в свою очередь, аккумулируется и трансформируется инвертором в переменный ток. Выработка электроэнергии и заряд аккумуляторов начинается при скорости ветра 2 м/с, а постоянный ветер силой не ниже 8 м/с в состоянии полностью обеспечить электроэнергией небольшой частный дом. К принципиальным недостаткам ветрогенераторов относят шум и вибрацию, сопровождающие вращение лопастей. По этой причине ветряные установки размещают на значительном расстоянии от жилья.

Слайд 13





Ветрогенераторы
Описание слайда:
Ветрогенераторы

Слайд 14





Геотермальная установка
Один из популярных видов альтернативной энергии у собственников частных домов — геотермальная. Как ее получить? Достаточно просто — нужно лишь пробурить скважину и установить в ней тепловой насос. Охлаждая воду, добытую из недр земли, геотермальная установка преобразовывает высвобожденную энергию в электрическую. Затрачивая 1 кВт электроэнергии, геотермальная установка генерирует 5-6 кВт. Для коттеджа площадью 150 метров такое оборудование обойдется приблизительно в 30 тыс. $.
Описание слайда:
Геотермальная установка Один из популярных видов альтернативной энергии у собственников частных домов — геотермальная. Как ее получить? Достаточно просто — нужно лишь пробурить скважину и установить в ней тепловой насос. Охлаждая воду, добытую из недр земли, геотермальная установка преобразовывает высвобожденную энергию в электрическую. Затрачивая 1 кВт электроэнергии, геотермальная установка генерирует 5-6 кВт. Для коттеджа площадью 150 метров такое оборудование обойдется приблизительно в 30 тыс. $.

Слайд 15





Геотермальная станция
Описание слайда:
Геотермальная станция

Слайд 16





Солнечные батареи
На один метр квадратный поверхности Земли в год приходится около 1 тыс. кВт солнечной энергии, что пропорционально энергии, полученной при расходе 100 кубометров газа или 100 литров дизельного топлива. Однако, солнечные батареи по причине высокой стоимости в частном секторе применяются нечасто, стоимость готовой солнечной электростанции мощностью 2 кВт составит около 55 тыс. $. Хотя, если собирать электростанцию самому, то можно существенно сэкономить.
Описание слайда:
Солнечные батареи На один метр квадратный поверхности Земли в год приходится около 1 тыс. кВт солнечной энергии, что пропорционально энергии, полученной при расходе 100 кубометров газа или 100 литров дизельного топлива. Однако, солнечные батареи по причине высокой стоимости в частном секторе применяются нечасто, стоимость готовой солнечной электростанции мощностью 2 кВт составит около 55 тыс. $. Хотя, если собирать электростанцию самому, то можно существенно сэкономить.

Слайд 17





Солнечные батареи
Описание слайда:
Солнечные батареи

Слайд 18





Энергосистемы
Для совместного и согласованного производства электроэнергии электростанции различного типа объединяют в энергосистемы. Объединение электростанций, а также самих энергосистем между собой позволяет снизить стоимость электроэнергии и гарантирует бесперебойность режима электроснабжения потребителя. Объясняется это тем, что производство и расходование электроэнергии происходят одновременно, и невозможно аккумулировать всю вырабатываемую энергию в каком-либо виде. Поэтому электростанции обязаны иметь определённый резерв по рабочей мощности, необходимый для того, чтобы быть способными в любой момент удовлетворить возросший спрос на электроэнергию со стороны потребителя (на возросшую нагрузку). А величина потребления (спроса на энергию) может резко колебаться при изменении режимов и условий работы потребителей.
Описание слайда:
Энергосистемы Для совместного и согласованного производства электроэнергии электростанции различного типа объединяют в энергосистемы. Объединение электростанций, а также самих энергосистем между собой позволяет снизить стоимость электроэнергии и гарантирует бесперебойность режима электроснабжения потребителя. Объясняется это тем, что производство и расходование электроэнергии происходят одновременно, и невозможно аккумулировать всю вырабатываемую энергию в каком-либо виде. Поэтому электростанции обязаны иметь определённый резерв по рабочей мощности, необходимый для того, чтобы быть способными в любой момент удовлетворить возросший спрос на электроэнергию со стороны потребителя (на возросшую нагрузку). А величина потребления (спроса на энергию) может резко колебаться при изменении режимов и условий работы потребителей.



Похожие презентации
Mypresentation.ru
Загрузить презентацию