🗊Презентация Применение методов планирования и прогнозирования к решению управленческих задач на транспорте

Нажмите для полного просмотра!
Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №1Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №2Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №3Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №4Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №5Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №6Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №7Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №8Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №9Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №10Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №11Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №12Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №13Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №14Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №15Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №16Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №17Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №18Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №19Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №20Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №21Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №22Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №23Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №24Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №25Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №26Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №27Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №28Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №29Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №30Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №31Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №32Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №33Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №34Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №35Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №36Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №37Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №38Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №39Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №40Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №41Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №42Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №43Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №44Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №45Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №46Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №47Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №48Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №49Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №50Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №51Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №52Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №53Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №54Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №55Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №56Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №57Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №58Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №59Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №60Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №61Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №62Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №63Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №64Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №65Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №66Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №67Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №68Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №69Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №70Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №71Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №72Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №73Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №74Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №75Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №76Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №77Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №78Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №79Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №80Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №81Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №82Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №83Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №84Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №85Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №86Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №87Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №88Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №89Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №90Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №91Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №92Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №93Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №94Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №95Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №96Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №97Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №98Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №99Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №100Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №101Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №102Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №103Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №104Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №105Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №106Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №107Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №108Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №109Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №110Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №111Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №112

Содержание

Вы можете ознакомиться и скачать презентацию на тему Применение методов планирования и прогнозирования к решению управленческих задач на транспорте. Доклад-сообщение содержит 112 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





РАЗДЕЛ 1.
Применение методов планирования и прогнозирования к решению управленческих задач на транспорте
Описание слайда:
РАЗДЕЛ 1. Применение методов планирования и прогнозирования к решению управленческих задач на транспорте

Слайд 2





 Метод индексного анализа
 Метод индексного анализа
В задачах данного типа используется несколько видов индексов:
индекс роста;
индекс соотношения;
структурный индекс;
натуральный индекс;
стоимостной индекс.
Индексы могут применяться или в виде коэффициента, или в виде процента. Чтобы индекс-коэффициент перевести в проценты, достаточно коэффициент умножить на 100 %.
Описание слайда:
Метод индексного анализа Метод индексного анализа В задачах данного типа используется несколько видов индексов: индекс роста; индекс соотношения; структурный индекс; натуральный индекс; стоимостной индекс. Индексы могут применяться или в виде коэффициента, или в виде процента. Чтобы индекс-коэффициент перевести в проценты, достаточно коэффициент умножить на 100 %.

Слайд 3





ИНДЕКС РОСТА применяется в том случае, когда необходимо сравнить два различных периода времени. Индекс роста показывает, во сколько раз экономический показатель одного периода больше (или меньше) того же показателя, но за другой период времени.
ИНДЕКС РОСТА применяется в том случае, когда необходимо сравнить два различных периода времени. Индекс роста показывает, во сколько раз экономический показатель одного периода больше (или меньше) того же показателя, но за другой период времени.
К примеру индекс роста объема производства (JV) рассчитывается по формуле:
где Vi - объем производства в отчетном году;
V0- объем производства в базисном году.
Описание слайда:
ИНДЕКС РОСТА применяется в том случае, когда необходимо сравнить два различных периода времени. Индекс роста показывает, во сколько раз экономический показатель одного периода больше (или меньше) того же показателя, но за другой период времени. ИНДЕКС РОСТА применяется в том случае, когда необходимо сравнить два различных периода времени. Индекс роста показывает, во сколько раз экономический показатель одного периода больше (или меньше) того же показателя, но за другой период времени. К примеру индекс роста объема производства (JV) рассчитывается по формуле: где Vi - объем производства в отчетном году; V0- объем производства в базисном году.

Слайд 4





ИНДЕКС СООТНОШЕНИЯ применяется, когда необходимо сравнить два экономических объекта (два предприятия, два района, две отрасли) за один и тот же период.
ИНДЕКС СООТНОШЕНИЯ применяется, когда необходимо сравнить два экономических объекта (два предприятия, два района, две отрасли) за один и тот же период.
Индекс соотношения покажет, во сколько раз показатель, характеризующий один экономический объект, больше (или меньше) того же показателя, но характеризующего другой экономический объект.
К примеру чтобы сравнить два предприятия по величине производительности труда необходимо рассчитать индекс соотношения производительности труда (JПТ) первого и второго предприятий.
ПТ1 - производительность труда на первом предприятии в i-ом году; ПТ2 - производительность труда на втором предприятии в i-ом году.
Описание слайда:
ИНДЕКС СООТНОШЕНИЯ применяется, когда необходимо сравнить два экономических объекта (два предприятия, два района, две отрасли) за один и тот же период. ИНДЕКС СООТНОШЕНИЯ применяется, когда необходимо сравнить два экономических объекта (два предприятия, два района, две отрасли) за один и тот же период. Индекс соотношения покажет, во сколько раз показатель, характеризующий один экономический объект, больше (или меньше) того же показателя, но характеризующего другой экономический объект. К примеру чтобы сравнить два предприятия по величине производительности труда необходимо рассчитать индекс соотношения производительности труда (JПТ) первого и второго предприятий. ПТ1 - производительность труда на первом предприятии в i-ом году; ПТ2 - производительность труда на втором предприятии в i-ом году.

Слайд 5





СТРУКТУРНЫЙ ИНДЕКС используется для характеристики структуры (состава) какого либо экономического явления.
СТРУКТУРНЫЙ ИНДЕКС используется для характеристики структуры (состава) какого либо экономического явления.
Например, структурный индекс покажет, какую долю (в %) в общем объеме производства занимает то или иное предприятие. Индексы могут быть рассчитаны как на базе натуральных, так и на базе стоимостных показателей. В первом случае индекс называется натуральным, во втором - стоимостным.
Описание слайда:
СТРУКТУРНЫЙ ИНДЕКС используется для характеристики структуры (состава) какого либо экономического явления. СТРУКТУРНЫЙ ИНДЕКС используется для характеристики структуры (состава) какого либо экономического явления. Например, структурный индекс покажет, какую долю (в %) в общем объеме производства занимает то или иное предприятие. Индексы могут быть рассчитаны как на базе натуральных, так и на базе стоимостных показателей. В первом случае индекс называется натуральным, во втором - стоимостным.

Слайд 6





Пример 1. требуется рассчитать стоимостной индекс роста объема производства по району в целом, если известно что V0 ,V1 - объем производства за 2010 и 2011 гг. в денежном выражении; N1,N2 - количество продукции (услуг), выпускаемых на 1 и 2-ом предприятиях (объем производства в натуральном выражении); P1,P2- цена единицы изделия (услуги) на 1-ом и 2-ом предприятиях.
Пример 1. требуется рассчитать стоимостной индекс роста объема производства по району в целом, если известно что V0 ,V1 - объем производства за 2010 и 2011 гг. в денежном выражении; N1,N2 - количество продукции (услуг), выпускаемых на 1 и 2-ом предприятиях (объем производства в натуральном выражении); P1,P2- цена единицы изделия (услуги) на 1-ом и 2-ом предприятиях.
Описание слайда:
Пример 1. требуется рассчитать стоимостной индекс роста объема производства по району в целом, если известно что V0 ,V1 - объем производства за 2010 и 2011 гг. в денежном выражении; N1,N2 - количество продукции (услуг), выпускаемых на 1 и 2-ом предприятиях (объем производства в натуральном выражении); P1,P2- цена единицы изделия (услуги) на 1-ом и 2-ом предприятиях. Пример 1. требуется рассчитать стоимостной индекс роста объема производства по району в целом, если известно что V0 ,V1 - объем производства за 2010 и 2011 гг. в денежном выражении; N1,N2 - количество продукции (услуг), выпускаемых на 1 и 2-ом предприятиях (объем производства в натуральном выражении); P1,P2- цена единицы изделия (услуги) на 1-ом и 2-ом предприятиях.

Слайд 7





Если необходимо определить стоимостной индекс роста производительности труда, то сначала нужно подсчитать стоимостной показатель производительности труда (руб./чел.), 
Если необходимо определить стоимостной индекс роста производительности труда, то сначала нужно подсчитать стоимостной показатель производительности труда (руб./чел.), 
для расчета натурального индекса роста производительности труда используется натуральный показатель производительности труда (шт./чел).
Где Ч – численность работающих
Описание слайда:
Если необходимо определить стоимостной индекс роста производительности труда, то сначала нужно подсчитать стоимостной показатель производительности труда (руб./чел.), Если необходимо определить стоимостной индекс роста производительности труда, то сначала нужно подсчитать стоимостной показатель производительности труда (руб./чел.), для расчета натурального индекса роста производительности труда используется натуральный показатель производительности труда (шт./чел). Где Ч – численность работающих

Слайд 8





стоимостной индекс роста производительности труда
стоимостной индекс роста производительности труда


Натуральный индекс роста производительности труда
Описание слайда:
стоимостной индекс роста производительности труда стоимостной индекс роста производительности труда Натуральный индекс роста производительности труда

Слайд 9





Если необходимо сравнение производительности труда 1-ого и 2-ого заводов то оно осуществляется с помощью индекса соотношения. При этом используются натуральные показатели производительности труда. 
Если необходимо сравнение производительности труда 1-ого и 2-ого заводов то оно осуществляется с помощью индекса соотношения. При этом используются натуральные показатели производительности труда. 
Структурные индексы должны показать долю каждого предприятия в общем объеме продукции района. Структурные индексы нужно рассчитать по натуральному объему производства. При этом объем продукции района принимается за 100 %.
Описание слайда:
Если необходимо сравнение производительности труда 1-ого и 2-ого заводов то оно осуществляется с помощью индекса соотношения. При этом используются натуральные показатели производительности труда. Если необходимо сравнение производительности труда 1-ого и 2-ого заводов то оно осуществляется с помощью индекса соотношения. При этом используются натуральные показатели производительности труда. Структурные индексы должны показать долю каждого предприятия в общем объеме продукции района. Структурные индексы нужно рассчитать по натуральному объему производства. При этом объем продукции района принимается за 100 %.

Слайд 10





 Метод многофакторного 
 Метод многофакторного 
экономического анализа

МЕТОД ЭКОНОМИЧЕСКОГО АНАЛИЗА - это метод, при котором сначала производится разложение исследуемого показателя на составные части, а затем производится анализ влияния каждой составляющей на изменение показателя в целом.
Например, показатель объема производства в денежном выражении, можно разложить на 3 составляющих:
производительность труда, измеряемую в натуральных единицах (Птн),
цену продукции (Р) 
численность работающих (Ч):
Описание слайда:
Метод многофакторного Метод многофакторного экономического анализа МЕТОД ЭКОНОМИЧЕСКОГО АНАЛИЗА - это метод, при котором сначала производится разложение исследуемого показателя на составные части, а затем производится анализ влияния каждой составляющей на изменение показателя в целом. Например, показатель объема производства в денежном выражении, можно разложить на 3 составляющих: производительность труда, измеряемую в натуральных единицах (Птн), цену продукции (Р) численность работающих (Ч):

Слайд 11





Если в какой-либо период произошло изменение объекта производства (V), то оно могло произойти и за счет изменений производительности труда, и за счет изменений цены и за счет изменения численности работающих.
Если в какой-либо период произошло изменение объекта производства (V), то оно могло произойти и за счет изменений производительности труда, и за счет изменений цены и за счет изменения численности работающих.
ΔV – общий прирост (уменьшение) объема производства;
ΔVпт – изменение объема производства за счет производительности труда;
ΔVp – изменение объема производства за счет цен;
ΔVч –  изменение объема производства за счет численности работающих;
Описание слайда:
Если в какой-либо период произошло изменение объекта производства (V), то оно могло произойти и за счет изменений производительности труда, и за счет изменений цены и за счет изменения численности работающих. Если в какой-либо период произошло изменение объекта производства (V), то оно могло произойти и за счет изменений производительности труда, и за счет изменений цены и за счет изменения численности работающих. ΔV – общий прирост (уменьшение) объема производства; ΔVпт – изменение объема производства за счет производительности труда; ΔVp – изменение объема производства за счет цен; ΔVч – изменение объема производства за счет численности работающих;

Слайд 12





Далее необходимо определить, в какой степени каждый из факторов повлиял на прирост (снижение) объема производства предприятия. Для этого сначала определяют, как влияет рост численности работников на изменение объема производства. Для этого используется формула:
Далее необходимо определить, в какой степени каждый из факторов повлиял на прирост (снижение) объема производства предприятия. Для этого сначала определяют, как влияет рост численности работников на изменение объема производства. Для этого используется формула:
Где V0 – объем производства в базисном периоде; 
Ч0 и Ч1 - численность работающих в базисном и отчетном периодах.
Описание слайда:
Далее необходимо определить, в какой степени каждый из факторов повлиял на прирост (снижение) объема производства предприятия. Для этого сначала определяют, как влияет рост численности работников на изменение объема производства. Для этого используется формула: Далее необходимо определить, в какой степени каждый из факторов повлиял на прирост (снижение) объема производства предприятия. Для этого сначала определяют, как влияет рост численности работников на изменение объема производства. Для этого используется формула: Где V0 – объем производства в базисном периоде; Ч0 и Ч1 - численность работающих в базисном и отчетном периодах.

Слайд 13





Далее определяется влияние фактора цен:
Далее определяется влияние фактора цен:
			- средняя цена на продукцию в базисном и отчетном периодах. Она определяется по формуле:
P1, P2, …, Pn – цена за единицу продукции 1, 2, …, n-го  вида;
N1, N2,…, Nn – количество выпущенной продукции 1, 2,…, n-го вида.
Описание слайда:
Далее определяется влияние фактора цен: Далее определяется влияние фактора цен: - средняя цена на продукцию в базисном и отчетном периодах. Она определяется по формуле: P1, P2, …, Pn – цена за единицу продукции 1, 2, …, n-го вида; N1, N2,…, Nn – количество выпущенной продукции 1, 2,…, n-го вида.

Слайд 14





В последнюю очередь рассчитывается влияние фактора «производительность труда» по формуле:
В последнюю очередь рассчитывается влияние фактора «производительность труда» по формуле:
Последовательность расчета факторов нужно строго соблюдать.
Описание слайда:
В последнюю очередь рассчитывается влияние фактора «производительность труда» по формуле: В последнюю очередь рассчитывается влияние фактора «производительность труда» по формуле: Последовательность расчета факторов нужно строго соблюдать.

Слайд 15





Пример 2: Необходимо проанализировать причины изменения объемов производства компании оказывающей 2 вида услуг. 
Пример 2: Необходимо проанализировать причины изменения объемов производства компании оказывающей 2 вида услуг. 
Определяем общий стоимостной прирост услуг компании.
Рассчитываем значения факторов прироста стоимостного объема услуг методом многофакторного экономического анализа:
определяется влияние численности работающих, в рублях (и доля фактора в общем приросте, в процентах);
определяется влияние фактора цен, в рублях (и доля в %);
определяется влияние производительности труда. Влияние производительности труда рассчитывается как разница: общий прирост (100 %) минус фактор численности минус фактор цен. Влияние производительности труда рассчитывается не только в процентах, но и в рублях.
Когда влияние всех трех факторов подсчитано, необходимо проанализировать, хорошо или плохо сработало предприятие и что нужно сделать в будущем, чтобы улучшить положение. На который из факторов нужно обратить наибольшее внимание, а какие факторы можно оставить в прежнем положении.
Описание слайда:
Пример 2: Необходимо проанализировать причины изменения объемов производства компании оказывающей 2 вида услуг. Пример 2: Необходимо проанализировать причины изменения объемов производства компании оказывающей 2 вида услуг. Определяем общий стоимостной прирост услуг компании. Рассчитываем значения факторов прироста стоимостного объема услуг методом многофакторного экономического анализа: определяется влияние численности работающих, в рублях (и доля фактора в общем приросте, в процентах); определяется влияние фактора цен, в рублях (и доля в %); определяется влияние производительности труда. Влияние производительности труда рассчитывается как разница: общий прирост (100 %) минус фактор численности минус фактор цен. Влияние производительности труда рассчитывается не только в процентах, но и в рублях. Когда влияние всех трех факторов подсчитано, необходимо проанализировать, хорошо или плохо сработало предприятие и что нужно сделать в будущем, чтобы улучшить положение. На который из факторов нужно обратить наибольшее внимание, а какие факторы можно оставить в прежнем положении.

Слайд 16





3. Основы снабжения автопредприятий материально-техническими ресурсами
3. Основы снабжения автопредприятий материально-техническими ресурсами

Программа обеспечения автотранспортных предприятий сырьем и материалами рассчитывается:
1) по отдельным видам сырья (в натуральном выражении);
2) по отдельным видам продукции (в стоимостном выражении);
3) в целом по предприятию (в стоимостном выражении). 
Для удобства решения задач подобного типа обычно составляются таблицы в Excel.
Описание слайда:
3. Основы снабжения автопредприятий материально-техническими ресурсами 3. Основы снабжения автопредприятий материально-техническими ресурсами Программа обеспечения автотранспортных предприятий сырьем и материалами рассчитывается: 1) по отдельным видам сырья (в натуральном выражении); 2) по отдельным видам продукции (в стоимостном выражении); 3) в целом по предприятию (в стоимостном выражении). Для удобства решения задач подобного типа обычно составляются таблицы в Excel.

Слайд 17


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №17
Описание слайда:

Слайд 18


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №18
Описание слайда:

Слайд 19





Размер (вес) одной партии масел (с учетом минимизации издержек на доставку и хранение материалов) рассчитывается по формуле:
Размер (вес) одной партии масел (с учетом минимизации издержек на доставку и хранение материалов) рассчитывается по формуле:
где Q* - число единиц, соответствующих одной поставке (размер партии);
Q - годовой расход масла на оказание услуг;
а - издержки на содержание материала, %;
 Р  - цены единицы материала. При этом используется средневзвешенная цена за 1 кг (масел);
b - расходы на получение одной поставки, %;
Описание слайда:
Размер (вес) одной партии масел (с учетом минимизации издержек на доставку и хранение материалов) рассчитывается по формуле: Размер (вес) одной партии масел (с учетом минимизации издержек на доставку и хранение материалов) рассчитывается по формуле: где Q* - число единиц, соответствующих одной поставке (размер партии); Q - годовой расход масла на оказание услуг; а - издержки на содержание материала, %; Р - цены единицы материала. При этом используется средневзвешенная цена за 1 кг (масел); b - расходы на получение одной поставки, %;

Слайд 20





4. Метод статистических группировок в оценке деятельности транспортных компаний
4. Метод статистических группировок в оценке деятельности транспортных компаний

МЕТОД ГРУППИРОВОК состоит в объединении экономических объектов в однородные группы для целей проведения анализа.
Группировки можно осуществлять по одному или нескольким группировочным признакам.
К примеру, группировка по видам автопредприятий - это группировка по одному группировочному признаку. Её можно осуществить следующим образом:
а) записываем в одну группу все предприятия одного и того же типа: в первую группу автобазы (АБ), во вторую – автоколонны (АК), в автокомбинаты (АКМ).
б) подсчитываем количество предприятий, попавших в каждую группу.
Описание слайда:
4. Метод статистических группировок в оценке деятельности транспортных компаний 4. Метод статистических группировок в оценке деятельности транспортных компаний МЕТОД ГРУППИРОВОК состоит в объединении экономических объектов в однородные группы для целей проведения анализа. Группировки можно осуществлять по одному или нескольким группировочным признакам. К примеру, группировка по видам автопредприятий - это группировка по одному группировочному признаку. Её можно осуществить следующим образом: а) записываем в одну группу все предприятия одного и того же типа: в первую группу автобазы (АБ), во вторую – автоколонны (АК), в автокомбинаты (АКМ). б) подсчитываем количество предприятий, попавших в каждую группу.

Слайд 21





В практической задаче 4 такой группировки недостаточно, чтобы провести необходимый анализ, поэтому нужна группировка не только по видам автопредприятий (АТП), но и по размеру прибыли. Это уже группировка по двум группировочным признакам. Чтобы осуществить такую группировку, достаточно в уже полученной нами группировке (по видам АТП) записать для каждого предприятия соответствующий ему размер прибыли.
В практической задаче 4 такой группировки недостаточно, чтобы провести необходимый анализ, поэтому нужна группировка не только по видам автопредприятий (АТП), но и по размеру прибыли. Это уже группировка по двум группировочным признакам. Чтобы осуществить такую группировку, достаточно в уже полученной нами группировке (по видам АТП) записать для каждого предприятия соответствующий ему размер прибыли.
Такая группировка будет иметь уже не два, а три столбца, в первом из которых записаны виды предприятий, во втором - названия АТП, в третьем – проставлена сумма прибыли каждого предприятия.
Описание слайда:
В практической задаче 4 такой группировки недостаточно, чтобы провести необходимый анализ, поэтому нужна группировка не только по видам автопредприятий (АТП), но и по размеру прибыли. Это уже группировка по двум группировочным признакам. Чтобы осуществить такую группировку, достаточно в уже полученной нами группировке (по видам АТП) записать для каждого предприятия соответствующий ему размер прибыли. В практической задаче 4 такой группировки недостаточно, чтобы провести необходимый анализ, поэтому нужна группировка не только по видам автопредприятий (АТП), но и по размеру прибыли. Это уже группировка по двум группировочным признакам. Чтобы осуществить такую группировку, достаточно в уже полученной нами группировке (по видам АТП) записать для каждого предприятия соответствующий ему размер прибыли. Такая группировка будет иметь уже не два, а три столбца, в первом из которых записаны виды предприятий, во втором - названия АТП, в третьем – проставлена сумма прибыли каждого предприятия.

Слайд 22





Для анализа массы прибыли нужно суммировать её по каждой из выделенных групп. Для анализа прибыльности АТП можно рассчитывать два показателя:
Для анализа массы прибыли нужно суммировать её по каждой из выделенных групп. Для анализа прибыльности АТП можно рассчитывать два показателя:
Средняя прибыль, приходящаяся на предприятие данного вида.
Рентабельность продукции по группам предприятий.
Рентабельность продукции (Pе) рассчитывается по формуле:
где П - размер прибыли; V - объем продукции.
Описание слайда:
Для анализа массы прибыли нужно суммировать её по каждой из выделенных групп. Для анализа прибыльности АТП можно рассчитывать два показателя: Для анализа массы прибыли нужно суммировать её по каждой из выделенных групп. Для анализа прибыльности АТП можно рассчитывать два показателя: Средняя прибыль, приходящаяся на предприятие данного вида. Рентабельность продукции по группам предприятий. Рентабельность продукции (Pе) рассчитывается по формуле: где П - размер прибыли; V - объем продукции.

Слайд 23





Для анализа рентабельности предприятий в соответствии с их величиной необходимо составить другую группировку: по объему производства и по рентабельности продукции. Для этого нужно:
Для анализа рентабельности предприятий в соответствии с их величиной необходимо составить другую группировку: по объему производства и по рентабельности продукции. Для этого нужно:
записать АТП в порядке убывания объемов производства;
определить границы выделяемых групп и шаг группировки по формуле:
где Шг - шаг группировки; max – максимальное значение объема производства, min - минимальное значение объема производства, К - количество выделяемых групп (К=3: крупные, средние и мелкие предприятия).
Описание слайда:
Для анализа рентабельности предприятий в соответствии с их величиной необходимо составить другую группировку: по объему производства и по рентабельности продукции. Для этого нужно: Для анализа рентабельности предприятий в соответствии с их величиной необходимо составить другую группировку: по объему производства и по рентабельности продукции. Для этого нужно: записать АТП в порядке убывания объемов производства; определить границы выделяемых групп и шаг группировки по формуле: где Шг - шаг группировки; max – максимальное значение объема производства, min - минимальное значение объема производства, К - количество выделяемых групп (К=3: крупные, средние и мелкие предприятия).

Слайд 24





Верхней границей первой выделяемой группы значение выручки (max). Нижнюю границу (ГН) первой группы рассчитывают по формуле:
Верхней границей первой выделяемой группы значение выручки (max). Нижнюю границу (ГН) первой группы рассчитывают по формуле:
Это же число будет верхней границей второй выделяемой группы и т.д.
 рассчитать рентабельность продукции по каждому сельхозпредприятию,
 полученную рентабельность занести в уже имеющуюся таблицу - группировку в третий столбец.
Определить зависимость между двумя показателями можно с помощью уже имеющейся у нас группировки. Для этого проследите по таблице, что происходит с показателем рентабельности (растет он или уменьшается) с уменьшением объема производства.
Описание слайда:
Верхней границей первой выделяемой группы значение выручки (max). Нижнюю границу (ГН) первой группы рассчитывают по формуле: Верхней границей первой выделяемой группы значение выручки (max). Нижнюю границу (ГН) первой группы рассчитывают по формуле: Это же число будет верхней границей второй выделяемой группы и т.д. рассчитать рентабельность продукции по каждому сельхозпредприятию, полученную рентабельность занести в уже имеющуюся таблицу - группировку в третий столбец. Определить зависимость между двумя показателями можно с помощью уже имеющейся у нас группировки. Для этого проследите по таблице, что происходит с показателем рентабельности (растет он или уменьшается) с уменьшением объема производства.

Слайд 25





5. Использование корреляционно-регрессионного анализа при решении управленческих задач на транспорте
5. Использование корреляционно-регрессионного анализа при решении управленческих задач на транспорте

МЕТОД КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА состоит из 2-х взаимосвязанных методов:
метода корреляционного анализа;
метода регрессивного анализа.
МЕТОД КОРРЕЛЯЦИОННОГО АНАЛИЗА позволяет определить, существует ли между экономическими показателями взаимосвязь и какова сила (степень) этой связи.
Описание слайда:
5. Использование корреляционно-регрессионного анализа при решении управленческих задач на транспорте 5. Использование корреляционно-регрессионного анализа при решении управленческих задач на транспорте МЕТОД КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА состоит из 2-х взаимосвязанных методов: метода корреляционного анализа; метода регрессивного анализа. МЕТОД КОРРЕЛЯЦИОННОГО АНАЛИЗА позволяет определить, существует ли между экономическими показателями взаимосвязь и какова сила (степень) этой связи.

Слайд 26





Для определения степени взаимосвязи (тесноты связи) рассчитывается коэффициент корреляции (R). 
Для определения степени взаимосвязи (тесноты связи) рассчитывается коэффициент корреляции (R). 
Считается, что при значениях величины R=± 0,7 и выше существует связь между рассматриваемыми факторами.
Описание слайда:
Для определения степени взаимосвязи (тесноты связи) рассчитывается коэффициент корреляции (R). Для определения степени взаимосвязи (тесноты связи) рассчитывается коэффициент корреляции (R). Считается, что при значениях величины R=± 0,7 и выше существует связь между рассматриваемыми факторами.

Слайд 27


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №27
Описание слайда:

Слайд 28





МЕТОД РЕГРЕССИВНОГО АНАЛИЗА позволяет определить точную формулу, отражающую взаимосвязь двух показателей x и y. Эта формула называется уравнением регрессии.
МЕТОД РЕГРЕССИВНОГО АНАЛИЗА позволяет определить точную формулу, отражающую взаимосвязь двух показателей x и y. Эта формула называется уравнением регрессии.
Уравнение регрессии показывает как изменяется величина y, если величина x изменится на единицу.
С помощью регрессивного анализа уравнение линейной зависимости y=kx + b определяется через его параметры k и b, которые, в свою очередь определяются решением системы уравнений:
Описание слайда:
МЕТОД РЕГРЕССИВНОГО АНАЛИЗА позволяет определить точную формулу, отражающую взаимосвязь двух показателей x и y. Эта формула называется уравнением регрессии. МЕТОД РЕГРЕССИВНОГО АНАЛИЗА позволяет определить точную формулу, отражающую взаимосвязь двух показателей x и y. Эта формула называется уравнением регрессии. Уравнение регрессии показывает как изменяется величина y, если величина x изменится на единицу. С помощью регрессивного анализа уравнение линейной зависимости y=kx + b определяется через его параметры k и b, которые, в свою очередь определяются решением системы уравнений:

Слайд 29





Если например, при решении системы уравнений получили k=2,5; b=1,8 , то x и y связаны между собой уравнением зависимости вида у=2.5⋅x+1,8.
Если например, при решении системы уравнений получили k=2,5; b=1,8 , то x и y связаны между собой уравнением зависимости вида у=2.5⋅x+1,8.
Метод корреляционно-регрессионного прогнозирования осуществляется в следующем порядке:
1) На основе вычисления R, устанавливается показатель (фактор X) в наибольшей степени определяющий Y (зависимую переменную)
2) с помощью корреляционно-регрессионного анализа определяется формула, показывающая зависимость между показателем Y и его фактором X. Пусть, например, полученная формула имеет вид уравнения: у=2,5⋅x+1,8
2) в полученное уравнение подставляется прогнозное значение X. Пусть, например, Xпрогн=4. Тогда: y=2,5⋅4+1,8
3) вычисляется искомое прогнозное значение Y. Таким образом: y=2,5⋅4+1,8=11,8.
Значит в прогнозном периоде Y составит 11,8/
Описание слайда:
Если например, при решении системы уравнений получили k=2,5; b=1,8 , то x и y связаны между собой уравнением зависимости вида у=2.5⋅x+1,8. Если например, при решении системы уравнений получили k=2,5; b=1,8 , то x и y связаны между собой уравнением зависимости вида у=2.5⋅x+1,8. Метод корреляционно-регрессионного прогнозирования осуществляется в следующем порядке: 1) На основе вычисления R, устанавливается показатель (фактор X) в наибольшей степени определяющий Y (зависимую переменную) 2) с помощью корреляционно-регрессионного анализа определяется формула, показывающая зависимость между показателем Y и его фактором X. Пусть, например, полученная формула имеет вид уравнения: у=2,5⋅x+1,8 2) в полученное уравнение подставляется прогнозное значение X. Пусть, например, Xпрогн=4. Тогда: y=2,5⋅4+1,8 3) вычисляется искомое прогнозное значение Y. Таким образом: y=2,5⋅4+1,8=11,8. Значит в прогнозном периоде Y составит 11,8/

Слайд 30





РАЗДЕЛ 2.
Применение метода анализа иерархий к решению управленческих задач на транспорте
Описание слайда:
РАЗДЕЛ 2. Применение метода анализа иерархий к решению управленческих задач на транспорте

Слайд 31





Метод анализа иерархий (МАИ) является процедурой для иерархического представления элементов, определяющих суть любой проблемы. Метод состоит в делении проблемы на все более простые составляющие части и дальнейшей обработке последовательности суждений лица, принимающего решение (ЛПР), по парным сравнениям. Эти суждения затем выражаются численно. МАИ включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Полученные таким образом значения соответствуют жестким оценкам.
Метод анализа иерархий (МАИ) является процедурой для иерархического представления элементов, определяющих суть любой проблемы. Метод состоит в делении проблемы на все более простые составляющие части и дальнейшей обработке последовательности суждений лица, принимающего решение (ЛПР), по парным сравнениям. Эти суждения затем выражаются численно. МАИ включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Полученные таким образом значения соответствуют жестким оценкам.
Описание слайда:
Метод анализа иерархий (МАИ) является процедурой для иерархического представления элементов, определяющих суть любой проблемы. Метод состоит в делении проблемы на все более простые составляющие части и дальнейшей обработке последовательности суждений лица, принимающего решение (ЛПР), по парным сравнениям. Эти суждения затем выражаются численно. МАИ включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Полученные таким образом значения соответствуют жестким оценкам. Метод анализа иерархий (МАИ) является процедурой для иерархического представления элементов, определяющих суть любой проблемы. Метод состоит в делении проблемы на все более простые составляющие части и дальнейшей обработке последовательности суждений лица, принимающего решение (ЛПР), по парным сравнениям. Эти суждения затем выражаются численно. МАИ включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Полученные таким образом значения соответствуют жестким оценкам.

Слайд 32





На первом этапе выявляются наиболее важные элементы проблемы, на втором — осуществляются оценки элементов; следующим этапом может быть выработка способа применения решения и оценка его качества. Весь процесс подвергается проверке. Процесс может быть проведен над последовательностью иерархий: в этом случае результаты, полученные в одной из них, используются в качестве входных данных при изучении следующей. 
На первом этапе выявляются наиболее важные элементы проблемы, на втором — осуществляются оценки элементов; следующим этапом может быть выработка способа применения решения и оценка его качества. Весь процесс подвергается проверке. Процесс может быть проведен над последовательностью иерархий: в этом случае результаты, полученные в одной из них, используются в качестве входных данных при изучении следующей.
Описание слайда:
На первом этапе выявляются наиболее важные элементы проблемы, на втором — осуществляются оценки элементов; следующим этапом может быть выработка способа применения решения и оценка его качества. Весь процесс подвергается проверке. Процесс может быть проведен над последовательностью иерархий: в этом случае результаты, полученные в одной из них, используются в качестве входных данных при изучении следующей. На первом этапе выявляются наиболее важные элементы проблемы, на втором — осуществляются оценки элементов; следующим этапом может быть выработка способа применения решения и оценка его качества. Весь процесс подвергается проверке. Процесс может быть проведен над последовательностью иерархий: в этом случае результаты, полученные в одной из них, используются в качестве входных данных при изучении следующей.

Слайд 33





Пример 3:
Пример 3:
Автопредприятие  решило приобрести ремонтный бокс для обслуживания своего автопарка и оказания сторонних услуг. В результате обсуждения удалось определить восемь критериев, которым, должен удовлетворять бокс.
Описание слайда:
Пример 3: Пример 3: Автопредприятие решило приобрести ремонтный бокс для обслуживания своего автопарка и оказания сторонних услуг. В результате обсуждения удалось определить восемь критериев, которым, должен удовлетворять бокс.

Слайд 34





Менеджмент компании решил определять сравнительную важность всех факторов. Задача заключалась в выборе одного из трех боксов-кандидатов. Первый шаг состоит в декомпозиции и представлении задачи в иерархической форме. На первом (высшем) уровне находится общая цель — «Бокс». На втором уровне находятся восемь критериев, уточняющих цель, и на третьем (нижнем) уровне находятся три бокса-кандидата, которые должны быть оценены по отношению к критериям второго уровня. 
Менеджмент компании решил определять сравнительную важность всех факторов. Задача заключалась в выборе одного из трех боксов-кандидатов. Первый шаг состоит в декомпозиции и представлении задачи в иерархической форме. На первом (высшем) уровне находится общая цель — «Бокс». На втором уровне находятся восемь критериев, уточняющих цель, и на третьем (нижнем) уровне находятся три бокса-кандидата, которые должны быть оценены по отношению к критериям второго уровня.
Описание слайда:
Менеджмент компании решил определять сравнительную важность всех факторов. Задача заключалась в выборе одного из трех боксов-кандидатов. Первый шаг состоит в декомпозиции и представлении задачи в иерархической форме. На первом (высшем) уровне находится общая цель — «Бокс». На втором уровне находятся восемь критериев, уточняющих цель, и на третьем (нижнем) уровне находятся три бокса-кандидата, которые должны быть оценены по отношению к критериям второго уровня. Менеджмент компании решил определять сравнительную важность всех факторов. Задача заключалась в выборе одного из трех боксов-кандидатов. Первый шаг состоит в декомпозиции и представлении задачи в иерархической форме. На первом (высшем) уровне находится общая цель — «Бокс». На втором уровне находятся восемь критериев, уточняющих цель, и на третьем (нижнем) уровне находятся три бокса-кандидата, которые должны быть оценены по отношению к критериям второго уровня.

Слайд 35





У менеджеров компании были следующие критерии:
У менеджеров компании были следующие критерии:
Размеры бокса: количество машиномест; размеры мест; общая площадь бокса.
Качество подъездных путей: наличие и состояние подъездных путей к боксу.
Удобство расположения: интенсивность движения транспорта; близость к транспортным маршрутам, реализуемым автопредприятием.
Год постройки бокса: не нуждается в объяснении.
Наличие парковки перед боксом: включает пространство перед боксом, которое могло бы использоваться для стоянки и маневрирования автомобилей.
Современное оборудование: ямы и подъемники; система удаления газа; кондиционирование воздуха; система сигнализации и другие подобные устройства, имеющиеся в боксе.
Общее состояние: потребность в ремонте; стены, состояние оборудования; электропроводка; крыша; водопроводная система.
Финансовые условия: условия продажи, возможность банковского кредитования и установленный процент.
Описание слайда:
У менеджеров компании были следующие критерии: У менеджеров компании были следующие критерии: Размеры бокса: количество машиномест; размеры мест; общая площадь бокса. Качество подъездных путей: наличие и состояние подъездных путей к боксу. Удобство расположения: интенсивность движения транспорта; близость к транспортным маршрутам, реализуемым автопредприятием. Год постройки бокса: не нуждается в объяснении. Наличие парковки перед боксом: включает пространство перед боксом, которое могло бы использоваться для стоянки и маневрирования автомобилей. Современное оборудование: ямы и подъемники; система удаления газа; кондиционирование воздуха; система сигнализации и другие подобные устройства, имеющиеся в боксе. Общее состояние: потребность в ремонте; стены, состояние оборудования; электропроводка; крыша; водопроводная система. Финансовые условия: условия продажи, возможность банковского кредитования и установленный процент.

Слайд 36





Элементы нижнего уровня иерархии должны быть попарно сравнимы по отношению к элементам следующего уровня и т.д. вплоть до вершины иерархии.
Элементы нижнего уровня иерархии должны быть попарно сравнимы по отношению к элементам следующего уровня и т.д. вплоть до вершины иерархии.
Например, менеджмент компании должен получить ответы на вопросы такого типа: «Насколько бокс А лучше бокса Б или В по критерию «Удобство расположения?» или «Насколько по отношению к основной цели (выбор бокса) размеры бокса важнее качества подъездных путей?» и т.д.
Описание слайда:
Элементы нижнего уровня иерархии должны быть попарно сравнимы по отношению к элементам следующего уровня и т.д. вплоть до вершины иерархии. Элементы нижнего уровня иерархии должны быть попарно сравнимы по отношению к элементам следующего уровня и т.д. вплоть до вершины иерархии. Например, менеджмент компании должен получить ответы на вопросы такого типа: «Насколько бокс А лучше бокса Б или В по критерию «Удобство расположения?» или «Насколько по отношению к основной цели (выбор бокса) размеры бокса важнее качества подъездных путей?» и т.д.

Слайд 37





МАИ требует структурирования проблемы участниками в процессе решения; в этом простом примере менеджеры автопредприятия составляют иерархию в соответствии с их потребностями, пониманием ограничений (например, денежных средств) и существующими вариантами выбора. Этот этап требует обсуждения, чтобы быть уверенными, что критерии и альтернативы отражают весь диапазон предпочтений и восприятия участников. 
МАИ требует структурирования проблемы участниками в процессе решения; в этом простом примере менеджеры автопредприятия составляют иерархию в соответствии с их потребностями, пониманием ограничений (например, денежных средств) и существующими вариантами выбора. Этот этап требует обсуждения, чтобы быть уверенными, что критерии и альтернативы отражают весь диапазон предпочтений и восприятия участников.
Описание слайда:
МАИ требует структурирования проблемы участниками в процессе решения; в этом простом примере менеджеры автопредприятия составляют иерархию в соответствии с их потребностями, пониманием ограничений (например, денежных средств) и существующими вариантами выбора. Этот этап требует обсуждения, чтобы быть уверенными, что критерии и альтернативы отражают весь диапазон предпочтений и восприятия участников. МАИ требует структурирования проблемы участниками в процессе решения; в этом простом примере менеджеры автопредприятия составляют иерархию в соответствии с их потребностями, пониманием ограничений (например, денежных средств) и существующими вариантами выбора. Этот этап требует обсуждения, чтобы быть уверенными, что критерии и альтернативы отражают весь диапазон предпочтений и восприятия участников.

Слайд 38





Пусть				— множество из n элементов 
Пусть				— множество из n элементов 
И				— соответственно их веса, или интенсивности. С использованием МАИ сравним вес, или интенсивность, каждого элемента с весом, или интенсивностью, любого другого элемента множества по отношению к общему для них свойству или цели.
Описание слайда:
Пусть — множество из n элементов Пусть — множество из n элементов И — соответственно их веса, или интенсивности. С использованием МАИ сравним вес, или интенсивность, каждого элемента с весом, или интенсивностью, любого другого элемента множества по отношению к общему для них свойству или цели.

Слайд 39





Шкала относительной важности МАИ
Для проведения субъективных парных сравнений разработана специальная шкала.
Описание слайда:
Шкала относительной важности МАИ Для проведения субъективных парных сравнений разработана специальная шкала.

Слайд 40





Сравнение весов можно представить следующим образом: 
Сравнение весов можно представить следующим образом:
Описание слайда:
Сравнение весов можно представить следующим образом: Сравнение весов можно представить следующим образом:

Слайд 41





Когда проблемы представлены иерархически, матрица составляется для сравнения относительной важности критериев на втором уровне по отношению к общей цели на первом уровне. Подобные матрицы должны быть построены для парных сравнений каждой альтернативы на третьем уровне по отношению к критериям второго уровня. Матрица составляется, если записать сравниваемую цель- (или критерий) вверху и перечислить сравниваемые элементы слева и сверху. 
Когда проблемы представлены иерархически, матрица составляется для сравнения относительной важности критериев на втором уровне по отношению к общей цели на первом уровне. Подобные матрицы должны быть построены для парных сравнений каждой альтернативы на третьем уровне по отношению к критериям второго уровня. Матрица составляется, если записать сравниваемую цель- (или критерий) вверху и перечислить сравниваемые элементы слева и сверху.
Описание слайда:
Когда проблемы представлены иерархически, матрица составляется для сравнения относительной важности критериев на втором уровне по отношению к общей цели на первом уровне. Подобные матрицы должны быть построены для парных сравнений каждой альтернативы на третьем уровне по отношению к критериям второго уровня. Матрица составляется, если записать сравниваемую цель- (или критерий) вверху и перечислить сравниваемые элементы слева и сверху. Когда проблемы представлены иерархически, матрица составляется для сравнения относительной важности критериев на втором уровне по отношению к общей цели на первом уровне. Подобные матрицы должны быть построены для парных сравнений каждой альтернативы на третьем уровне по отношению к критериям второго уровня. Матрица составляется, если записать сравниваемую цель- (или критерий) вверху и перечислить сравниваемые элементы слева и сверху.

Слайд 42





В примере, связанном с покупкой бокса, потребуется девять таких матриц: одна для второго уровня иерархии и восемь — для третьего уровня.
В примере, связанном с покупкой бокса, потребуется девять таких матриц: одна для второго уровня иерархии и восемь — для третьего уровня.
Описание слайда:
В примере, связанном с покупкой бокса, потребуется девять таких матриц: одна для второго уровня иерархии и восемь — для третьего уровня. В примере, связанном с покупкой бокса, потребуется девять таких матриц: одна для второго уровня иерархии и восемь — для третьего уровня.

Слайд 43





Покупка бокса: матрица попарных 
Покупка бокса: матрица попарных 
сравнений для уровня 3
Описание слайда:
Покупка бокса: матрица попарных Покупка бокса: матрица попарных сравнений для уровня 3

Слайд 44





Пока клетки этих матриц не заполнены; они оставлены для оценок или суждений об относительной важности сравниваемых отдельных предметов по отношению к цели, или критерию, обозначенному вверху. 
Пока клетки этих матриц не заполнены; они оставлены для оценок или суждений об относительной важности сравниваемых отдельных предметов по отношению к цели, или критерию, обозначенному вверху. 
Для примера с покупкой бокса вопросы, которые следует задавать при сравнении двух критериев на втором уровне, будут такого рода: который из двух сравниваемых критериев считается более важным для менеджеров компании, покупающей бокс, и насколько он более важен именно по отношению к цели «БОКС»? 
Аналогично на третьем уровне следует спросить: какой из сравниваемых боксов более желателен для компании и насколько он более желателен по отношению к определенному критерию второго уровня по которому производится сравнение(например,  «по размеру»)?
Описание слайда:
Пока клетки этих матриц не заполнены; они оставлены для оценок или суждений об относительной важности сравниваемых отдельных предметов по отношению к цели, или критерию, обозначенному вверху. Пока клетки этих матриц не заполнены; они оставлены для оценок или суждений об относительной важности сравниваемых отдельных предметов по отношению к цели, или критерию, обозначенному вверху. Для примера с покупкой бокса вопросы, которые следует задавать при сравнении двух критериев на втором уровне, будут такого рода: который из двух сравниваемых критериев считается более важным для менеджеров компании, покупающей бокс, и насколько он более важен именно по отношению к цели «БОКС»? Аналогично на третьем уровне следует спросить: какой из сравниваемых боксов более желателен для компании и насколько он более желателен по отношению к определенному критерию второго уровня по которому производится сравнение(например, «по размеру»)?

Слайд 45





ВАЖНО:  сравнивается относительная важность левых элементов матрицы с элементами наверху. Поэтому если элемент слева важнее, чем элемент наверху, то в клетку заносится положительное целое (от 1 до 9); в противном случае — обратное число (дробь). Относительная важность любого элемента, сравниваемого с самим собой, равна 1; поэтому диагональ матрицы (элементы от левого верхнего угла до нижнего правого) содержит только единицы. Наконец, обратными величинами заполняют симметричные клетки, т. е. если элемент А воспринимается как «слегка более важный» (3 на шкале) относительно элемента Б, то считаем, что элемент Б «слегка менее важен» (1/3 на шкале) относительно элемента А. 
ВАЖНО:  сравнивается относительная важность левых элементов матрицы с элементами наверху. Поэтому если элемент слева важнее, чем элемент наверху, то в клетку заносится положительное целое (от 1 до 9); в противном случае — обратное число (дробь). Относительная важность любого элемента, сравниваемого с самим собой, равна 1; поэтому диагональ матрицы (элементы от левого верхнего угла до нижнего правого) содержит только единицы. Наконец, обратными величинами заполняют симметричные клетки, т. е. если элемент А воспринимается как «слегка более важный» (3 на шкале) относительно элемента Б, то считаем, что элемент Б «слегка менее важен» (1/3 на шкале) относительно элемента А.
Описание слайда:
ВАЖНО: сравнивается относительная важность левых элементов матрицы с элементами наверху. Поэтому если элемент слева важнее, чем элемент наверху, то в клетку заносится положительное целое (от 1 до 9); в противном случае — обратное число (дробь). Относительная важность любого элемента, сравниваемого с самим собой, равна 1; поэтому диагональ матрицы (элементы от левого верхнего угла до нижнего правого) содержит только единицы. Наконец, обратными величинами заполняют симметричные клетки, т. е. если элемент А воспринимается как «слегка более важный» (3 на шкале) относительно элемента Б, то считаем, что элемент Б «слегка менее важен» (1/3 на шкале) относительно элемента А. ВАЖНО: сравнивается относительная важность левых элементов матрицы с элементами наверху. Поэтому если элемент слева важнее, чем элемент наверху, то в клетку заносится положительное целое (от 1 до 9); в противном случае — обратное число (дробь). Относительная важность любого элемента, сравниваемого с самим собой, равна 1; поэтому диагональ матрицы (элементы от левого верхнего угла до нижнего правого) содержит только единицы. Наконец, обратными величинами заполняют симметричные клетки, т. е. если элемент А воспринимается как «слегка более важный» (3 на шкале) относительно элемента Б, то считаем, что элемент Б «слегка менее важен» (1/3 на шкале) относительно элемента А.

Слайд 46





Шкала относительной важности МАИ
Описание слайда:
Шкала относительной важности МАИ

Слайд 47





Сравнение весов можно представить следующим образом: 
Сравнение весов можно представить следующим образом:
Описание слайда:
Сравнение весов можно представить следующим образом: Сравнение весов можно представить следующим образом:

Слайд 48





Вернемся к менеджерам компании, покупающей бокс, и рассмотрим второй уровень иерархии. Клетки матрицы заполнены в соответствии с субъективными суждениями менеджеров на основании их предпочтений, восприятия ограничений, возможностей, с использованием шкалы от 1 до 9. Например, на вопрос: какова важность размеров бокса относительно качества подъездных путей по отношению к общей цели? Менеджеры пришли к соглашению, что размеры существенно важнее, и поэтому они внесли 5 в соответствующую клетку матрицы; 1/5 автоматически заносится в симметричную относительно диагонали клетку, что соответствует противоположному сравнению.
Вернемся к менеджерам компании, покупающей бокс, и рассмотрим второй уровень иерархии. Клетки матрицы заполнены в соответствии с субъективными суждениями менеджеров на основании их предпочтений, восприятия ограничений, возможностей, с использованием шкалы от 1 до 9. Например, на вопрос: какова важность размеров бокса относительно качества подъездных путей по отношению к общей цели? Менеджеры пришли к соглашению, что размеры существенно важнее, и поэтому они внесли 5 в соответствующую клетку матрицы; 1/5 автоматически заносится в симметричную относительно диагонали клетку, что соответствует противоположному сравнению.
Описание слайда:
Вернемся к менеджерам компании, покупающей бокс, и рассмотрим второй уровень иерархии. Клетки матрицы заполнены в соответствии с субъективными суждениями менеджеров на основании их предпочтений, восприятия ограничений, возможностей, с использованием шкалы от 1 до 9. Например, на вопрос: какова важность размеров бокса относительно качества подъездных путей по отношению к общей цели? Менеджеры пришли к соглашению, что размеры существенно важнее, и поэтому они внесли 5 в соответствующую клетку матрицы; 1/5 автоматически заносится в симметричную относительно диагонали клетку, что соответствует противоположному сравнению. Вернемся к менеджерам компании, покупающей бокс, и рассмотрим второй уровень иерархии. Клетки матрицы заполнены в соответствии с субъективными суждениями менеджеров на основании их предпочтений, восприятия ограничений, возможностей, с использованием шкалы от 1 до 9. Например, на вопрос: какова важность размеров бокса относительно качества подъездных путей по отношению к общей цели? Менеджеры пришли к соглашению, что размеры существенно важнее, и поэтому они внесли 5 в соответствующую клетку матрицы; 1/5 автоматически заносится в симметричную относительно диагонали клетку, что соответствует противоположному сравнению.

Слайд 49





Покупка бокса: матрица попарных 
Покупка бокса: матрица попарных 
сравнений для уровня 2 (заполненная)
Описание слайда:
Покупка бокса: матрица попарных Покупка бокса: матрица попарных сравнений для уровня 2 (заполненная)

Слайд 50





Получаем восемь матриц суждений размерностью 3X3, поскольку имеется восемь критериев на втором уровне и три бокса, которые попарно сравниваются по каждому из критериев. Матрицы вновь содержат суждения менеджмента. Для того чтобы понять суждения, дадим краткое описание боксов.
Получаем восемь матриц суждений размерностью 3X3, поскольку имеется восемь критериев на втором уровне и три бокса, которые попарно сравниваются по каждому из критериев. Матрицы вновь содержат суждения менеджмента. Для того чтобы понять суждения, дадим краткое описание боксов.
Описание слайда:
Получаем восемь матриц суждений размерностью 3X3, поскольку имеется восемь критериев на втором уровне и три бокса, которые попарно сравниваются по каждому из критериев. Матрицы вновь содержат суждения менеджмента. Для того чтобы понять суждения, дадим краткое описание боксов. Получаем восемь матриц суждений размерностью 3X3, поскольку имеется восемь критериев на втором уровне и три бокса, которые попарно сравниваются по каждому из критериев. Матрицы вновь содержат суждения менеджмента. Для того чтобы понять суждения, дадим краткое описание боксов.

Слайд 51





Бокс А. Это — самый большой бокс, он удобно расположен, рядом транспортные развязки, налоги на бокс невелики. У бокса имеется паркинг больше, чем у боксов Б и В. Тем не менее общее состояние не очень хорошее, нужна основательная починка и проведение малярных работ. Из-за того что бокс финансируется банком с высокой процентной ставкой, финансовые условия можно считать неудовлетворительными.
Бокс А. Это — самый большой бокс, он удобно расположен, рядом транспортные развязки, налоги на бокс невелики. У бокса имеется паркинг больше, чем у боксов Б и В. Тем не менее общее состояние не очень хорошее, нужна основательная починка и проведение малярных работ. Из-за того что бокс финансируется банком с высокой процентной ставкой, финансовые условия можно считать неудовлетворительными.
Бокс Б. Этот бокс меньше бокса А, плохие подъездные пути и расположен неудобно. Бокс довольно маленький и в нем низкая обеспеченность оборудованием для сервиса техники. С другой стороны, общее состояние очень хорошее. Кроме того, на этот бокс можно получить низкую процентную ставку по кредиту - финансовые условия вполне удовлетворительны
Бокс В. Этот бокс самый маленький, и в нем нет отсутствует сервисное оборудование. Расположен крайне неудобно, но бокс в хорошем состоянии и представляется безопасным. Паркинг перед боксом больше, чем у бокса Б, однако несравненно меньше обширного пространства перед боксом А. Общее состояние бокса. Финансовые условия намного лучше, чем для бокса А, но не так хороши, как для бокса Б.
Описание слайда:
Бокс А. Это — самый большой бокс, он удобно расположен, рядом транспортные развязки, налоги на бокс невелики. У бокса имеется паркинг больше, чем у боксов Б и В. Тем не менее общее состояние не очень хорошее, нужна основательная починка и проведение малярных работ. Из-за того что бокс финансируется банком с высокой процентной ставкой, финансовые условия можно считать неудовлетворительными. Бокс А. Это — самый большой бокс, он удобно расположен, рядом транспортные развязки, налоги на бокс невелики. У бокса имеется паркинг больше, чем у боксов Б и В. Тем не менее общее состояние не очень хорошее, нужна основательная починка и проведение малярных работ. Из-за того что бокс финансируется банком с высокой процентной ставкой, финансовые условия можно считать неудовлетворительными. Бокс Б. Этот бокс меньше бокса А, плохие подъездные пути и расположен неудобно. Бокс довольно маленький и в нем низкая обеспеченность оборудованием для сервиса техники. С другой стороны, общее состояние очень хорошее. Кроме того, на этот бокс можно получить низкую процентную ставку по кредиту - финансовые условия вполне удовлетворительны Бокс В. Этот бокс самый маленький, и в нем нет отсутствует сервисное оборудование. Расположен крайне неудобно, но бокс в хорошем состоянии и представляется безопасным. Паркинг перед боксом больше, чем у бокса Б, однако несравненно меньше обширного пространства перед боксом А. Общее состояние бокса. Финансовые условия намного лучше, чем для бокса А, но не так хороши, как для бокса Б.

Слайд 52





Синтез локальных приоритетов
Синтез локальных приоритетов

Из группы матриц парных сравнений необходимо сформировать набор локальных приоритетов, которые выражают относительную ценность (желательность) каждого отдельного объекта. Для этого нужно вычислить множество собственных векторов для каждой матрицы, а затем нормализовать результат к единице, получая тем самым вектор приоритетов.
Описание слайда:
Синтез локальных приоритетов Синтез локальных приоритетов Из группы матриц парных сравнений необходимо сформировать набор локальных приоритетов, которые выражают относительную ценность (желательность) каждого отдельного объекта. Для этого нужно вычислить множество собственных векторов для каждой матрицы, а затем нормализовать результат к единице, получая тем самым вектор приоритетов.

Слайд 53





Вычисление собственных векторов — можно сделать, перемножая элементы в каждой строке и извлекая корни n-й степени, где n — число элементов. Полученный таким образом столбец чисел нормализуется делением каждого числа на сумму всех чисел. 
Вычисление собственных векторов — можно сделать, перемножая элементы в каждой строке и извлекая корни n-й степени, где n — число элементов. Полученный таким образом столбец чисел нормализуется делением каждого числа на сумму всех чисел. 
Попросту говоря, если задано десять видов десерта на выбор, то имеется возможность не только расположить их в порядке нашего предпочтения, но и разрешить вопрос о сравнительной интенсивности нашего желания попробовать каждый из них.
Описание слайда:
Вычисление собственных векторов — можно сделать, перемножая элементы в каждой строке и извлекая корни n-й степени, где n — число элементов. Полученный таким образом столбец чисел нормализуется делением каждого числа на сумму всех чисел. Вычисление собственных векторов — можно сделать, перемножая элементы в каждой строке и извлекая корни n-й степени, где n — число элементов. Полученный таким образом столбец чисел нормализуется делением каждого числа на сумму всех чисел. Попросту говоря, если задано десять видов десерта на выбор, то имеется возможность не только расположить их в порядке нашего предпочтения, но и разрешить вопрос о сравнительной интенсивности нашего желания попробовать каждый из них.

Слайд 54


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №54
Описание слайда:

Слайд 55


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №55
Описание слайда:

Слайд 56





Умножение матрицы на вектор приоритетов производится следующим образом: умножаем первый элемент строки на первый элемент столбца х; второй элемент в строке на второй элемент столбца х, и т.д. Затем суммируем эти величины и получаем одно число для этой строки:
Умножение матрицы на вектор приоритетов производится следующим образом: умножаем первый элемент строки на первый элемент столбца х; второй элемент в строке на второй элемент столбца х, и т.д. Затем суммируем эти величины и получаем одно число для этой строки:
Описание слайда:
Умножение матрицы на вектор приоритетов производится следующим образом: умножаем первый элемент строки на первый элемент столбца х; второй элемент в строке на второй элемент столбца х, и т.д. Затем суммируем эти величины и получаем одно число для этой строки: Умножение матрицы на вектор приоритетов производится следующим образом: умножаем первый элемент строки на первый элемент столбца х; второй элемент в строке на второй элемент столбца х, и т.д. Затем суммируем эти величины и получаем одно число для этой строки:

Слайд 57





Для иллюстрации этих идей на конкретной задаче вернемся к автопредприятию, покупающему бокс. На рисунке представлена матрица попарных сравнений для второго уровня иерархии, которая, содержит восемь критериев, воспринимаемых как воздействующие на общую цель—«БОКС». Вычислим вектор приоритетов. 
Для иллюстрации этих идей на конкретной задаче вернемся к автопредприятию, покупающему бокс. На рисунке представлена матрица попарных сравнений для второго уровня иерархии, которая, содержит восемь критериев, воспринимаемых как воздействующие на общую цель—«БОКС». Вычислим вектор приоритетов.
Описание слайда:
Для иллюстрации этих идей на конкретной задаче вернемся к автопредприятию, покупающему бокс. На рисунке представлена матрица попарных сравнений для второго уровня иерархии, которая, содержит восемь критериев, воспринимаемых как воздействующие на общую цель—«БОКС». Вычислим вектор приоритетов. Для иллюстрации этих идей на конкретной задаче вернемся к автопредприятию, покупающему бокс. На рисунке представлена матрица попарных сравнений для второго уровня иерархии, которая, содержит восемь критериев, воспринимаемых как воздействующие на общую цель—«БОКС». Вычислим вектор приоритетов.

Слайд 58





На рисунке вводятся парные сравнения для третьего уровня иерархии, иллюстрирующие сравнительную желательность боксов А, Б и В по отношению к критериям второго уровня. Видно, что бокс Б — лучший по критерию финансирования, а бокс А воспринимается как лучший относительно размеров. 
На рисунке вводятся парные сравнения для третьего уровня иерархии, иллюстрирующие сравнительную желательность боксов А, Б и В по отношению к критериям второго уровня. Видно, что бокс Б — лучший по критерию финансирования, а бокс А воспринимается как лучший относительно размеров.
Описание слайда:
На рисунке вводятся парные сравнения для третьего уровня иерархии, иллюстрирующие сравнительную желательность боксов А, Б и В по отношению к критериям второго уровня. Видно, что бокс Б — лучший по критерию финансирования, а бокс А воспринимается как лучший относительно размеров. На рисунке вводятся парные сравнения для третьего уровня иерархии, иллюстрирующие сравнительную желательность боксов А, Б и В по отношению к критериям второго уровня. Видно, что бокс Б — лучший по критерию финансирования, а бокс А воспринимается как лучший относительно размеров.

Слайд 59


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №59
Описание слайда:

Слайд 60





Проверка согласованности 
Проверка согласованности 
локальных приоритетов
Используя метод МАИ к примеру при взвешивании предметов можно оценить, что А тяжелее, чем Б, Б тяжелее, чем В, однако В тяжелее, чем А. В частности, это может случиться, когда веса предметов А, Б и В близки, а прибор недостаточно точен, чтобы их различить. Отсутствие согласованности может быть серьезным ограничивающим фактором.
Описание слайда:
Проверка согласованности Проверка согласованности локальных приоритетов Используя метод МАИ к примеру при взвешивании предметов можно оценить, что А тяжелее, чем Б, Б тяжелее, чем В, однако В тяжелее, чем А. В частности, это может случиться, когда веса предметов А, Б и В близки, а прибор недостаточно точен, чтобы их различить. Отсутствие согласованности может быть серьезным ограничивающим фактором.

Слайд 61





Для оценки согласованности используют индекс согласованности (ИС), который дает информацию о степени нарушения согласованности оценок. 
Для оценки согласованности используют индекс согласованности (ИС), который дает информацию о степени нарушения согласованности оценок. 

Алгоритм расчета индекса согласованности в каждой матрице и для всей иерархии: 

Сначала суммируется каждый столбец суждений, 
Сумма первого столбца умножается на величину первой компоненты нормализованного вектора приоритетов, сумма второго столбца — на вторую компоненту и т.д. 
Полученные числа суммируются. Таким образом получаем величину, обозначаемую маx.
Описание слайда:
Для оценки согласованности используют индекс согласованности (ИС), который дает информацию о степени нарушения согласованности оценок. Для оценки согласованности используют индекс согласованности (ИС), который дает информацию о степени нарушения согласованности оценок. Алгоритм расчета индекса согласованности в каждой матрице и для всей иерархии: Сначала суммируется каждый столбец суждений, Сумма первого столбца умножается на величину первой компоненты нормализованного вектора приоритетов, сумма второго столбца — на вторую компоненту и т.д. Полученные числа суммируются. Таким образом получаем величину, обозначаемую маx.

Слайд 62





Алгоритм расчета индекса согласованности в каждой матрице и для всей иерархии: 
Алгоритм расчета индекса согласованности в каждой матрице и для всей иерархии: 

Индекс согласованности вычисляется по формуле 
где n — число сравниваемых элементов. 
Если разделить ИС на число, соответствующее случайной согласованности матрицы того же порядка, получим отношение согласованности (ОС). Величина ОС должна быть порядка 10 % или менее, чтобы быть приемлемой. Если ОС выходит из этих пределов, то участникам нужно исследовать задачу и проверить свои суждения.
Описание слайда:
Алгоритм расчета индекса согласованности в каждой матрице и для всей иерархии: Алгоритм расчета индекса согласованности в каждой матрице и для всей иерархии: Индекс согласованности вычисляется по формуле где n — число сравниваемых элементов. Если разделить ИС на число, соответствующее случайной согласованности матрицы того же порядка, получим отношение согласованности (ОС). Величина ОС должна быть порядка 10 % или менее, чтобы быть приемлемой. Если ОС выходит из этих пределов, то участникам нужно исследовать задачу и проверить свои суждения.

Слайд 63





Определение отношения согласованности 
в матрице уровня 2
Описание слайда:
Определение отношения согласованности в матрице уровня 2

Слайд 64





Определение отношения согласованности 
в матрице 
уровня 3
Описание слайда:
Определение отношения согласованности в матрице уровня 3

Слайд 65





Заключительным этапов МАИ является применение принципа синтеза. Для, выявления составных, или глобальных, приоритетов боксов локальные приоритеты располагаются по отношению к каждому критерию - каждый столбец векторов умножается на приоритет соответствующего критерия и результат складывается вдоль каждой строки. Например, для бокса А имеем:
Заключительным этапов МАИ является применение принципа синтеза. Для, выявления составных, или глобальных, приоритетов боксов локальные приоритеты располагаются по отношению к каждому критерию - каждый столбец векторов умножается на приоритет соответствующего критерия и результат складывается вдоль каждой строки. Например, для бокса А имеем:
Описание слайда:
Заключительным этапов МАИ является применение принципа синтеза. Для, выявления составных, или глобальных, приоритетов боксов локальные приоритеты располагаются по отношению к каждому критерию - каждый столбец векторов умножается на приоритет соответствующего критерия и результат складывается вдоль каждой строки. Например, для бокса А имеем: Заключительным этапов МАИ является применение принципа синтеза. Для, выявления составных, или глобальных, приоритетов боксов локальные приоритеты располагаются по отношению к каждому критерию - каждый столбец векторов умножается на приоритет соответствующего критерия и результат складывается вдоль каждой строки. Например, для бокса А имеем:

Слайд 66





РАЗДЕЛ 3.
Применение методики линейного программирования 
к решению управленческих задач на транспорте
Описание слайда:
РАЗДЕЛ 3. Применение методики линейного программирования к решению управленческих задач на транспорте

Слайд 67





1. ВВЕДЕНИЕ
Существует множество форм деятельности предприятий, которые связаны с распределением ресурсов. Эти ресурсы включают труд, сырье, оборудование и денежные средства. Процесс распределения ресурсов называют программированием. Размеры ресурсов ограничены, поэтому при программировании возникают проблемы. Если транспортное предприятие осуществляет различные рейсы с использованием одного автопарка и трудовых ресурсов, то ее администрация должна решить, какие рейсы и в каком количестве совершать. Обычно решение администрации направлено на организацию перевозок таким образом, чтобы максимизировать выручку, максимизировать время использования автопарка или минимизировать затраты труда. Переменные решения — это количество рейсов каждого маршрута, которое необходимо произвести за данный период времени.
Описание слайда:
1. ВВЕДЕНИЕ Существует множество форм деятельности предприятий, которые связаны с распределением ресурсов. Эти ресурсы включают труд, сырье, оборудование и денежные средства. Процесс распределения ресурсов называют программированием. Размеры ресурсов ограничены, поэтому при программировании возникают проблемы. Если транспортное предприятие осуществляет различные рейсы с использованием одного автопарка и трудовых ресурсов, то ее администрация должна решить, какие рейсы и в каком количестве совершать. Обычно решение администрации направлено на организацию перевозок таким образом, чтобы максимизировать выручку, максимизировать время использования автопарка или минимизировать затраты труда. Переменные решения — это количество рейсов каждого маршрута, которое необходимо произвести за данный период времени.

Слайд 68





Аналогично, если компания обладает определенным капиталом для инвестирования ряда проектов, распределение денежных сумм по каждому проекту будет подчинено некоторой цели. Она может заключаться в минимизации риска или максимизации темпов роста капитала. Переменные решения в данном случае - это денежные суммы, помещаемые в каждый проект.
Аналогично, если компания обладает определенным капиталом для инвестирования ряда проектов, распределение денежных сумм по каждому проекту будет подчинено некоторой цели. Она может заключаться в минимизации риска или максимизации темпов роста капитала. Переменные решения в данном случае - это денежные суммы, помещаемые в каждый проект.
В общем случае цель состоит в определении наиболее эффективного метода такого распределения ресурсов по соответствующим переменным, которое оптимизирует некоторый результат функционирования системы. Очень часто полезным инструментом в процессе распределения ресурсов являются методы моделирования. Математическим программированием называется использование математических моделей и методов для решения проблем программирования. Существует ряд различных методов, основанных на идеях математического программирования, мы рассмотрим линейное программирование
Описание слайда:
Аналогично, если компания обладает определенным капиталом для инвестирования ряда проектов, распределение денежных сумм по каждому проекту будет подчинено некоторой цели. Она может заключаться в минимизации риска или максимизации темпов роста капитала. Переменные решения в данном случае - это денежные суммы, помещаемые в каждый проект. Аналогично, если компания обладает определенным капиталом для инвестирования ряда проектов, распределение денежных сумм по каждому проекту будет подчинено некоторой цели. Она может заключаться в минимизации риска или максимизации темпов роста капитала. Переменные решения в данном случае - это денежные суммы, помещаемые в каждый проект. В общем случае цель состоит в определении наиболее эффективного метода такого распределения ресурсов по соответствующим переменным, которое оптимизирует некоторый результат функционирования системы. Очень часто полезным инструментом в процессе распределения ресурсов являются методы моделирования. Математическим программированием называется использование математических моделей и методов для решения проблем программирования. Существует ряд различных методов, основанных на идеях математического программирования, мы рассмотрим линейное программирование

Слайд 69





Линейное программирование можно использовать, если цель и ограничения на ресурсы можно выразить количественно в форме линейных уравнений. Последовательность метода:
Линейное программирование можно использовать, если цель и ограничения на ресурсы можно выразить количественно в форме линейных уравнений. Последовательность метода:
Математическая формализация задачи. Это означает, что нужно идентифицировать управляемые переменные и цель задачи. Затем с помощью этих переменных цель и ограничения на ресурсы описываются в форме линейных  уравнений
Рассматриваются все допустимые сочетания переменных. Из них выбирается то, которое оптимизирует целевую функцию задачи. Если исследуемая задача содержит только две переменные, ее можно решить графически. В случае исследования задачи со многими переменными необходимо использовать специальные программы.
Когда оптимальное решение получено, производится его оценка. Она включает в себя анализ задачи на чувствительность.
Описание слайда:
Линейное программирование можно использовать, если цель и ограничения на ресурсы можно выразить количественно в форме линейных уравнений. Последовательность метода: Линейное программирование можно использовать, если цель и ограничения на ресурсы можно выразить количественно в форме линейных уравнений. Последовательность метода: Математическая формализация задачи. Это означает, что нужно идентифицировать управляемые переменные и цель задачи. Затем с помощью этих переменных цель и ограничения на ресурсы описываются в форме линейных уравнений Рассматриваются все допустимые сочетания переменных. Из них выбирается то, которое оптимизирует целевую функцию задачи. Если исследуемая задача содержит только две переменные, ее можно решить графически. В случае исследования задачи со многими переменными необходимо использовать специальные программы. Когда оптимальное решение получено, производится его оценка. Она включает в себя анализ задачи на чувствительность.

Слайд 70





2. ФОРМУЛИРОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ТРАНСПОРТЕ
2. ФОРМУЛИРОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ТРАНСПОРТЕ


Процедура является общей для формулирования всех задач линейного программирования:
1. Определение переменных задачи, значения которых нужно получить в пределах существующих ограничений.
2. Определение цели и ограничений на ресурсы.
3. Описание цели через переменные задачи.
4. Описание ограничений через переменные задачи.
Описание слайда:
2. ФОРМУЛИРОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ТРАНСПОРТЕ 2. ФОРМУЛИРОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ТРАНСПОРТЕ Процедура является общей для формулирования всех задач линейного программирования: 1. Определение переменных задачи, значения которых нужно получить в пределах существующих ограничений. 2. Определение цели и ограничений на ресурсы. 3. Описание цели через переменные задачи. 4. Описание ограничений через переменные задачи.

Слайд 71





ПРИМЕР 1. 
ПРИМЕР 1. 

Водитель-экспедитор осуществляет перевозки двух видов товаров: «Рыбные товары и мясо» и «Молочные товары». По санитарным нормам продукция должна перевозиться отдельно (то есть водитель ведет машину, загруженную либо рыбой, либо молоком). 
Работа экспедитора будет выражаться в количестве «сделанных» тонно-километров (ткм, 1 тонна-километр – перевозка 1 тонны груза на расстояние в 1 км). 
Товары имеют различную плотность поэтому затраты на перевозку будут различными: затраты на 1 ткм перевозки товарной группы «Рыба» - 0,02 ч; затраты на 1 ткм перевозки товара «Молоко» - 0,04 ч
Описание слайда:
ПРИМЕР 1. ПРИМЕР 1. Водитель-экспедитор осуществляет перевозки двух видов товаров: «Рыбные товары и мясо» и «Молочные товары». По санитарным нормам продукция должна перевозиться отдельно (то есть водитель ведет машину, загруженную либо рыбой, либо молоком). Работа экспедитора будет выражаться в количестве «сделанных» тонно-километров (ткм, 1 тонна-километр – перевозка 1 тонны груза на расстояние в 1 км). Товары имеют различную плотность поэтому затраты на перевозку будут различными: затраты на 1 ткм перевозки товарной группы «Рыба» - 0,02 ч; затраты на 1 ткм перевозки товара «Молоко» - 0,04 ч

Слайд 72





ПРИМЕР 1. 
ПРИМЕР 1. 
Товары доставляются в различные магазины, поэтому пробег автомобиля, а следовательно и расход топлива будет отличатся при перевозке различных товарных груп: расход топлива на 1 ткм при перевозке «Рыбы» 0,1 л; расход топлива на 1 ткм при перевозке «Молоко» 0,4 л. 
Суточный лимит топлива, оплачиваемый компанией экспедитору компании составляет 160 л. 
Возможный график работы – 24 часа в сутки.
Оплата водителя составляет 0,10 $ за 1 ткм на развозе «Рыбы» и 0,30 $ за 1 ткм на развозе «Молока». Сколько и каких рейсов следует производить ежедневно, если цель водителя состоит в максимизации ежедневного дохода?
Описание слайда:
ПРИМЕР 1. ПРИМЕР 1. Товары доставляются в различные магазины, поэтому пробег автомобиля, а следовательно и расход топлива будет отличатся при перевозке различных товарных груп: расход топлива на 1 ткм при перевозке «Рыбы» 0,1 л; расход топлива на 1 ткм при перевозке «Молоко» 0,4 л. Суточный лимит топлива, оплачиваемый компанией экспедитору компании составляет 160 л. Возможный график работы – 24 часа в сутки. Оплата водителя составляет 0,10 $ за 1 ткм на развозе «Рыбы» и 0,30 $ за 1 ткм на развозе «Молока». Сколько и каких рейсов следует производить ежедневно, если цель водителя состоит в максимизации ежедневного дохода?

Слайд 73





Решение
Решение

Шаг. Определение переменных. В рамках заданных ограничений экспедитор должен принять решение о том, какое количество рейсов каждого вида следует совершить. Пусть р – число ткм по доставке «Рыбы» в сутки. Пусть m — число ткм по доставке «Молока» в сутки.
Шаг. Определение цели и ограничений. Цель состоит в максимизации суточного дохода водителя. Пусть Р — общий ежедневный доход, $. Он максимизируется в рамках ограничений на количество часов автомобиля (водителя) и лимита топлива.
Описание слайда:
Решение Решение Шаг. Определение переменных. В рамках заданных ограничений экспедитор должен принять решение о том, какое количество рейсов каждого вида следует совершить. Пусть р – число ткм по доставке «Рыбы» в сутки. Пусть m — число ткм по доставке «Молока» в сутки. Шаг. Определение цели и ограничений. Цель состоит в максимизации суточного дохода водителя. Пусть Р — общий ежедневный доход, $. Он максимизируется в рамках ограничений на количество часов автомобиля (водителя) и лимита топлива.

Слайд 74





Шаг. Выразим цель через переменные:
Шаг. Выразим цель через переменные:
Это целевая функция — соотношение, которое подлежит оптимизации.
Шаг. Выразим ограничения через переменные. Существуют следующие ограничения на процесс перевозки:
Время работы. Для осуществления р ткм на рейсах по «Рыбе» и m ткм на рейсах по «Молоку» требуется: (0,02*р + 0,04*m) часов работы машины ежедневно. Максимальное время работы машины в сутки составляет 24 ч, следовательно, объем перевозок должен быть таким, чтобы число затраченных часов работы автомашины было меньше либо равно 24 ч ежесуточно:
Описание слайда:
Шаг. Выразим цель через переменные: Шаг. Выразим цель через переменные: Это целевая функция — соотношение, которое подлежит оптимизации. Шаг. Выразим ограничения через переменные. Существуют следующие ограничения на процесс перевозки: Время работы. Для осуществления р ткм на рейсах по «Рыбе» и m ткм на рейсах по «Молоку» требуется: (0,02*р + 0,04*m) часов работы машины ежедневно. Максимальное время работы машины в сутки составляет 24 ч, следовательно, объем перевозок должен быть таким, чтобы число затраченных часов работы автомашины было меньше либо равно 24 ч ежесуточно:

Слайд 75





Топливо. Осуществление р ткм на рейсах по «Рыбе» и m ткм на рейсах по «Молоку» требует (0,1*р+0,4*m) л топлива ежедневно. Максимальный расход оплачиваемый водителю составляет 160 л в день, следовательно, объем перевозок должен быть таким, чтобы требуемое количество топлива не превышало 160 л в сутки. Таким образом:
Топливо. Осуществление р ткм на рейсах по «Рыбе» и m ткм на рейсах по «Молоку» требует (0,1*р+0,4*m) л топлива ежедневно. Максимальный расход оплачиваемый водителю составляет 160 л в день, следовательно, объем перевозок должен быть таким, чтобы требуемое количество топлива не превышало 160 л в сутки. Таким образом:
Условие неотрицательности. Разумно предположить что водитель н может осуществлять рейсы в отрицательных количествах. Следовательно:
Описание слайда:
Топливо. Осуществление р ткм на рейсах по «Рыбе» и m ткм на рейсах по «Молоку» требует (0,1*р+0,4*m) л топлива ежедневно. Максимальный расход оплачиваемый водителю составляет 160 л в день, следовательно, объем перевозок должен быть таким, чтобы требуемое количество топлива не превышало 160 л в сутки. Таким образом: Топливо. Осуществление р ткм на рейсах по «Рыбе» и m ткм на рейсах по «Молоку» требует (0,1*р+0,4*m) л топлива ежедневно. Максимальный расход оплачиваемый водителю составляет 160 л в день, следовательно, объем перевозок должен быть таким, чтобы требуемое количество топлива не превышало 160 л в сутки. Таким образом: Условие неотрицательности. Разумно предположить что водитель н может осуществлять рейсы в отрицательных количествах. Следовательно:

Слайд 76





Окончательная формулировка задачи линейного программирования  имеет следующий вид. 
Окончательная формулировка задачи линейного программирования  имеет следующий вид. 

при ограничениях:
На время работы автомобиля
На топливо:	
Неотрицательность
Описание слайда:
Окончательная формулировка задачи линейного программирования имеет следующий вид. Окончательная формулировка задачи линейного программирования имеет следующий вид. при ограничениях: На время работы автомобиля На топливо: Неотрицательность

Слайд 77





ПРИМЕР 2. 
ПРИМЕР 2. 
Автопредприятие осуществляет автобусное сообщение по 2-м маршрутам (условно назовем их X и Y). Фонд рабочего времени предприятия 4000 чел.-ч в месяц.
Один рейс маршрута X требует 1 чел.-ч работы водителей
Один рейс маршрута Y требует 2 чел.-ч работы водителя
Автобусный парк предприятия позволяет осуществлять в месяц:
2250 рейсов маршрута Х
1750 рейсов маршрута Y
Описание слайда:
ПРИМЕР 2. ПРИМЕР 2. Автопредприятие осуществляет автобусное сообщение по 2-м маршрутам (условно назовем их X и Y). Фонд рабочего времени предприятия 4000 чел.-ч в месяц. Один рейс маршрута X требует 1 чел.-ч работы водителей Один рейс маршрута Y требует 2 чел.-ч работы водителя Автобусный парк предприятия позволяет осуществлять в месяц: 2250 рейсов маршрута Х 1750 рейсов маршрута Y

Слайд 78





ПРИМЕР 2. 
ПРИМЕР 2. 
Автобусный парк на маршрутах представлен автобусами разных типов, некоторые из них переведены на газ, другие работают на бензине. В среднем расходы по маршрутам: 
1 рейс маршрута Х требует 2 л газа и 5 л бензина
1 рейс маршрута Y требует 5 л газа и 2 л бензина
Месячный лимит топлива автоперевозчика составляет по 10 т (10 000 л) каждого вида горючего.
Описание слайда:
ПРИМЕР 2. ПРИМЕР 2. Автобусный парк на маршрутах представлен автобусами разных типов, некоторые из них переведены на газ, другие работают на бензине. В среднем расходы по маршрутам: 1 рейс маршрута Х требует 2 л газа и 5 л бензина 1 рейс маршрута Y требует 5 л газа и 2 л бензина Месячный лимит топлива автоперевозчика составляет по 10 т (10 000 л) каждого вида горючего.

Слайд 79





ПРИМЕР 2. 
ПРИМЕР 2. 
Дополнительные условия:
У автопредприятия договор с Администрацией о выполнении минимум  600 рейсов по маршруту Х (социальная нагрузка).
У автопредприятия договор с профсоюзом водителей о том что общее количество рейсов  в месяц будет не меньше 1500. 
Доход от рейсов:
1 рейс по маршруту Х приносит доход в 30 $
1 рейс по маршруту Y приносит доход в 40 $ 
ЗАДАЧА: Сколько и каких рейсов необходимо сделать автоперевозчику чтобы максимизировать общий месячный доход.
Описание слайда:
ПРИМЕР 2. ПРИМЕР 2. Дополнительные условия: У автопредприятия договор с Администрацией о выполнении минимум 600 рейсов по маршруту Х (социальная нагрузка). У автопредприятия договор с профсоюзом водителей о том что общее количество рейсов в месяц будет не меньше 1500. Доход от рейсов: 1 рейс по маршруту Х приносит доход в 30 $ 1 рейс по маршруту Y приносит доход в 40 $ ЗАДАЧА: Сколько и каких рейсов необходимо сделать автоперевозчику чтобы максимизировать общий месячный доход.

Слайд 80





Решение
Решение

Сначала необходимо сформулировать задачу линейного программирования. 
Шаг. Идентификация переменных. Необходимо произвести х рейсов типа X и у рейсов типа Y в неделю.
Шаг. Какова цель задачи? Каковы ограничения на процесс перевозок? Цель состоит в максимизации общего дохода за месяц. Процесс перевозок  ограничивается уровнем:
фонда рабочего времени - максимально возможный фонд рабочего времени составляет 4000 чел -ч. в мес.
производственной мощности — для каждого рейса существует отдельное ограничение по количеству. Автопарк позволяет выполнять не более 2250 рейсов типа X и 1750 типа Y в месяц.
Лимит газа составляет 10 000 л в месяц.
Лимит бензина равен 10 000 л месяц.
Описание слайда:
Решение Решение Сначала необходимо сформулировать задачу линейного программирования. Шаг. Идентификация переменных. Необходимо произвести х рейсов типа X и у рейсов типа Y в неделю. Шаг. Какова цель задачи? Каковы ограничения на процесс перевозок? Цель состоит в максимизации общего дохода за месяц. Процесс перевозок ограничивается уровнем: фонда рабочего времени - максимально возможный фонд рабочего времени составляет 4000 чел -ч. в мес. производственной мощности — для каждого рейса существует отдельное ограничение по количеству. Автопарк позволяет выполнять не более 2250 рейсов типа X и 1750 типа Y в месяц. Лимит газа составляет 10 000 л в месяц. Лимит бензина равен 10 000 л месяц.

Слайд 81





Кроме того, существуют ограничения на минимальный объем рейсов каждого вида:
Кроме того, существуют ограничения на минимальный объем рейсов каждого вида:
Социальный заказ - число произведенных рейсов по маршруту X должно быть достаточным для выполнения договоренности с Администрацией (минимум 600 рейсов в месяц по маршруту Х). 
Профсоюзное соглашение - общее число рейсов (х + у) не должно быть ниже объема, предусмотренного соглашением.
Описание слайда:
Кроме того, существуют ограничения на минимальный объем рейсов каждого вида: Кроме того, существуют ограничения на минимальный объем рейсов каждого вида: Социальный заказ - число произведенных рейсов по маршруту X должно быть достаточным для выполнения договоренности с Администрацией (минимум 600 рейсов в месяц по маршруту Х). Профсоюзное соглашение - общее число рейсов (х + у) не должно быть ниже объема, предусмотренного соглашением.

Слайд 82





Шаг. Целевая функция. Пусть Р - общий доход за месяц, $, где
Шаг. Целевая функция. Пусть Р - общий доход за месяц, $, где
Описание слайда:
Шаг. Целевая функция. Пусть Р - общий доход за месяц, $, где Шаг. Целевая функция. Пусть Р - общий доход за месяц, $, где

Слайд 83





Шаг. Ограничения на перевозочный процесс. 
Шаг. Ограничения на перевозочный процесс. 
Ограничения по фонду 
рабочего времени: 
Ограничения по перевозочным 
возможностям:
Ограничения по газу
Ограничения по бензину 
Требования по социальным рейсам
Требования профсоюза
Условия неотрицательности
Описание слайда:
Шаг. Ограничения на перевозочный процесс. Шаг. Ограничения на перевозочный процесс. Ограничения по фонду рабочего времени: Ограничения по перевозочным возможностям: Ограничения по газу Ограничения по бензину Требования по социальным рейсам Требования профсоюза Условия неотрицательности

Слайд 84





3. РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
3. РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
 
Решение задачи будем рассматривать на примере водителя-экспедитора (пример 1). Ограничения задачи можно изобразить графически. Время работы автомобиля: 
Проведем прямую 
0,02 р + 0,04 m = 24.
Описание слайда:
3. РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 3. РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ Решение задачи будем рассматривать на примере водителя-экспедитора (пример 1). Ограничения задачи можно изобразить графически. Время работы автомобиля: Проведем прямую 0,02 р + 0,04 m = 24.

Слайд 85





Простейшим способом нанесения прямой на график является нахождение точек пересечения данной прямой с осями координат. Подставив р=0 в уравнение и рассчитав значение т, получим, что при р=0 m = 600. Подставив m=0 в уравнение и рассчитав значение р, получим, что при m=0 р=1200. Нанесем эти две точки на график и соединим их прямой. 
Простейшим способом нанесения прямой на график является нахождение точек пересечения данной прямой с осями координат. Подставив р=0 в уравнение и рассчитав значение т, получим, что при р=0 m = 600. Подставив m=0 в уравнение и рассчитав значение р, получим, что при m=0 р=1200. Нанесем эти две точки на график и соединим их прямой.
Описание слайда:
Простейшим способом нанесения прямой на график является нахождение точек пересечения данной прямой с осями координат. Подставив р=0 в уравнение и рассчитав значение т, получим, что при р=0 m = 600. Подставив m=0 в уравнение и рассчитав значение р, получим, что при m=0 р=1200. Нанесем эти две точки на график и соединим их прямой. Простейшим способом нанесения прямой на график является нахождение точек пересечения данной прямой с осями координат. Подставив р=0 в уравнение и рассчитав значение т, получим, что при р=0 m = 600. Подставив m=0 в уравнение и рассчитав значение р, получим, что при m=0 р=1200. Нанесем эти две точки на график и соединим их прямой.

Слайд 86





Ограничение на топливо: 
Ограничение на топливо: 
Проведем прямую: 0,01 р + 0,04 m = 16.
Описание слайда:
Ограничение на топливо: Ограничение на топливо: Проведем прямую: 0,01 р + 0,04 m = 16.

Слайд 87





Условие неотрицательности 
Условие неотрицательности
Описание слайда:
Условие неотрицательности Условие неотрицательности

Слайд 88





Нанеся все ограничения задачи на один график, получим:
Нанеся все ограничения задачи на один график, получим:
Описание слайда:
Нанеся все ограничения задачи на один график, получим: Нанеся все ограничения задачи на один график, получим:

Слайд 89





Рассмотрим алгоритм выбора объема перевозок, максимизирующего ежедневный общий доход водителя. Целевая функция задачи имеет следующий вид:
Рассмотрим алгоритм выбора объема перевозок, максимизирующего ежедневный общий доход водителя. Целевая функция задачи имеет следующий вид:
Описание слайда:
Рассмотрим алгоритм выбора объема перевозок, максимизирующего ежедневный общий доход водителя. Целевая функция задачи имеет следующий вид: Рассмотрим алгоритм выбора объема перевозок, максимизирующего ежедневный общий доход водителя. Целевая функция задачи имеет следующий вид:

Слайд 90





Очевидно, что         последним            допустимым решением является точка А. Координаты этой точки соответствуют оптимальному сочетанию объемов перевозок двух товаров. Приближенные значения координат точки А можно найти непосредственно из графика, а точные их значения можно получить, решив систему из двух уравнений, описывающих те ограничения, на пересечении которых находится точка А.
Очевидно, что         последним            допустимым решением является точка А. Координаты этой точки соответствуют оптимальному сочетанию объемов перевозок двух товаров. Приближенные значения координат точки А можно найти непосредственно из графика, а точные их значения можно получить, решив систему из двух уравнений, описывающих те ограничения, на пересечении которых находится точка А.
Описание слайда:
Очевидно, что последним допустимым решением является точка А. Координаты этой точки соответствуют оптимальному сочетанию объемов перевозок двух товаров. Приближенные значения координат точки А можно найти непосредственно из графика, а точные их значения можно получить, решив систему из двух уравнений, описывающих те ограничения, на пересечении которых находится точка А. Очевидно, что последним допустимым решением является точка А. Координаты этой точки соответствуют оптимальному сочетанию объемов перевозок двух товаров. Приближенные значения координат точки А можно найти непосредственно из графика, а точные их значения можно получить, решив систему из двух уравнений, описывающих те ограничения, на пересечении которых находится точка А.

Слайд 91





Если построить на графике линию уровня задачи линейного программирования так, как показано на рис. 5, можно двигаться параллельно этой линии вдоль допустимого множества в направлении увеличения дохода до тех пор, пока не будет достигнуто последнее допустимое решение (или решения), т.е. до тех пор, пока все точки линии уровня не окажутся за пределами допустимого множества.
Если построить на графике линию уровня задачи линейного программирования так, как показано на рис. 5, можно двигаться параллельно этой линии вдоль допустимого множества в направлении увеличения дохода до тех пор, пока не будет достигнуто последнее допустимое решение (или решения), т.е. до тех пор, пока все точки линии уровня не окажутся за пределами допустимого множества.
Описание слайда:
Если построить на графике линию уровня задачи линейного программирования так, как показано на рис. 5, можно двигаться параллельно этой линии вдоль допустимого множества в направлении увеличения дохода до тех пор, пока не будет достигнуто последнее допустимое решение (или решения), т.е. до тех пор, пока все точки линии уровня не окажутся за пределами допустимого множества. Если построить на графике линию уровня задачи линейного программирования так, как показано на рис. 5, можно двигаться параллельно этой линии вдоль допустимого множества в направлении увеличения дохода до тех пор, пока не будет достигнуто последнее допустимое решение (или решения), т.е. до тех пор, пока все точки линии уровня не окажутся за пределами допустимого множества.

Слайд 92





Эти два ограничения называются лимитирующими ограничениями. 
Эти два ограничения называются лимитирующими ограничениями.
Описание слайда:
Эти два ограничения называются лимитирующими ограничениями. Эти два ограничения называются лимитирующими ограничениями.

Слайд 93





Решая систему уравнений получаем р=800 т-км m=200 т-км
Решая систему уравнений получаем р=800 т-км m=200 т-км
Таким образом, чтобы получать максимальный ежедневный доход, водитель должен «сделать» 800 т-км по развозу «Рыбы» и 200 т-км по развозу «Молока» в сутки.
Описание слайда:
Решая систему уравнений получаем р=800 т-км m=200 т-км Решая систему уравнений получаем р=800 т-км m=200 т-км Таким образом, чтобы получать максимальный ежедневный доход, водитель должен «сделать» 800 т-км по развозу «Рыбы» и 200 т-км по развозу «Молока» в сутки.

Слайд 94





Обратимся к примеру 2, в котором рассматривалась максимизация дохода автоперевозчика реализующего два маршрута 
Обратимся к примеру 2, в котором рассматривалась максимизация дохода автоперевозчика реализующего два маршрута 
Решение
Допустимые области для каждого из ограничений задачи выглядят следующим образом:
Описание слайда:
Обратимся к примеру 2, в котором рассматривалась максимизация дохода автоперевозчика реализующего два маршрута Обратимся к примеру 2, в котором рассматривалась максимизация дохода автоперевозчика реализующего два маршрута Решение Допустимые области для каждого из ограничений задачи выглядят следующим образом:

Слайд 95


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №95
Описание слайда:

Слайд 96


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №96
Описание слайда:

Слайд 97


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №97
Описание слайда:

Слайд 98


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №98
Описание слайда:

Слайд 99


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №99
Описание слайда:

Слайд 100


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №100
Описание слайда:

Слайд 101





Лимитирующими являются ограничения на:
Лимитирующими являются ограничения на:
Фонд рабочего времени
Бензин
Решая систему уравнений
Получим x = 1500 и y = 1250. Оптимальной стратегией автоперевозчика является 1500 рейсов по маршруту X и 1250 рейсов по маршруту Y в месяц. Таким образом, максимальный доход за неделю составит:
Описание слайда:
Лимитирующими являются ограничения на: Лимитирующими являются ограничения на: Фонд рабочего времени Бензин Решая систему уравнений Получим x = 1500 и y = 1250. Оптимальной стратегией автоперевозчика является 1500 рейсов по маршруту X и 1250 рейсов по маршруту Y в месяц. Таким образом, максимальный доход за неделю составит:

Слайд 102





Процесс преобразования неравенств, в систему уравнений достаточно прост. Для этого в левую часть неравенства вводится дополнительная переменная. Эта переменная призвана отразить величину разности между правой и левой частями неравенства. Рассмотрим рейсы по маршрутам X и Y (пример 2). Для получения системы уравнений в каждое ограничение введем дополнительную переменную. Обозначим данную переменную через s. Кроме того, примем предпосылку о неотрицательности значений этих переменных. Это значит, что дополнительные переменные прибавляются к левым частям всех ограничений знака 	 и вычитаются из левых частей ограничений знака	. Задача линейного программирования в данном случае принимает следующий вид:
Процесс преобразования неравенств, в систему уравнений достаточно прост. Для этого в левую часть неравенства вводится дополнительная переменная. Эта переменная призвана отразить величину разности между правой и левой частями неравенства. Рассмотрим рейсы по маршрутам X и Y (пример 2). Для получения системы уравнений в каждое ограничение введем дополнительную переменную. Обозначим данную переменную через s. Кроме того, примем предпосылку о неотрицательности значений этих переменных. Это значит, что дополнительные переменные прибавляются к левым частям всех ограничений знака 	 и вычитаются из левых частей ограничений знака	. Задача линейного программирования в данном случае принимает следующий вид:
Описание слайда:
Процесс преобразования неравенств, в систему уравнений достаточно прост. Для этого в левую часть неравенства вводится дополнительная переменная. Эта переменная призвана отразить величину разности между правой и левой частями неравенства. Рассмотрим рейсы по маршрутам X и Y (пример 2). Для получения системы уравнений в каждое ограничение введем дополнительную переменную. Обозначим данную переменную через s. Кроме того, примем предпосылку о неотрицательности значений этих переменных. Это значит, что дополнительные переменные прибавляются к левым частям всех ограничений знака и вычитаются из левых частей ограничений знака . Задача линейного программирования в данном случае принимает следующий вид: Процесс преобразования неравенств, в систему уравнений достаточно прост. Для этого в левую часть неравенства вводится дополнительная переменная. Эта переменная призвана отразить величину разности между правой и левой частями неравенства. Рассмотрим рейсы по маршрутам X и Y (пример 2). Для получения системы уравнений в каждое ограничение введем дополнительную переменную. Обозначим данную переменную через s. Кроме того, примем предпосылку о неотрицательности значений этих переменных. Это значит, что дополнительные переменные прибавляются к левым частям всех ограничений знака и вычитаются из левых частей ограничений знака . Задача линейного программирования в данном случае принимает следующий вид:

Слайд 103





Значения остаточных переменных в ограничениях на мощность автопарка равны 750 для рейсов по маршруту X и 500 для рейсов по маршруту Y, а именно:
Значения остаточных переменных в ограничениях на мощность автопарка равны 750 для рейсов по маршруту X и 500 для рейсов по маршруту Y, а именно:
Описание слайда:
Значения остаточных переменных в ограничениях на мощность автопарка равны 750 для рейсов по маршруту X и 500 для рейсов по маршруту Y, а именно: Значения остаточных переменных в ограничениях на мощность автопарка равны 750 для рейсов по маршруту X и 500 для рейсов по маршруту Y, а именно:

Слайд 104





Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования
Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования

Поскольку один или несколько ресурсов используются полностью, значение целевой функции ограничено. Если появляется дополнительное количество лимитирующего ресурса, то оптимальное решение может быть улучшено. Однако изменение оптимального решения приведет к улучшению значения целевой функции только в том случае, если сумма дополнительных издержек по обеспечению дополнительным количеством ресурса не превышает сумму прибыли, полученной ь результате его использования.
Описание слайда:
Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования Поскольку один или несколько ресурсов используются полностью, значение целевой функции ограничено. Если появляется дополнительное количество лимитирующего ресурса, то оптимальное решение может быть улучшено. Однако изменение оптимального решения приведет к улучшению значения целевой функции только в том случае, если сумма дополнительных издержек по обеспечению дополнительным количеством ресурса не превышает сумму прибыли, полученной ь результате его использования.

Слайд 105







С увеличением объема лимитирующего ресурса соответствующее ограничение становится менее жестким. Так как жесткость лимитирующего ограничения постепенно снижается, его график будет перемещаться параллельно своему начальному положению, одновременно будет происходить перемещение оптимальной крайней точки в направлении, которое улучшает значение целевой функции. Этот процесс будет продолжаться до тех пор, пока какой-либо другой ресурс не будет полностью использован и рассматриваемое ограничение, перестанет быть лимитирующим. Величина, на которую увеличивается значение целевой функции при снижении жесткости лимитирующего ограничения на единицу, т.е. при увеличении количества лимитирующего ресурса на единицу; называется теневой ценой ресурса. Теневая цена ресурса - это стоимость единицы данного ресурса в оптимальном решении Увеличение объема лимитирующего ресурса на единицу целесообразно только в том случае, если существует возможность его получения по стоимости которая ниже, чем теневая цена данного ресурса.
Описание слайда:
С увеличением объема лимитирующего ресурса соответствующее ограничение становится менее жестким. Так как жесткость лимитирующего ограничения постепенно снижается, его график будет перемещаться параллельно своему начальному положению, одновременно будет происходить перемещение оптимальной крайней точки в направлении, которое улучшает значение целевой функции. Этот процесс будет продолжаться до тех пор, пока какой-либо другой ресурс не будет полностью использован и рассматриваемое ограничение, перестанет быть лимитирующим. Величина, на которую увеличивается значение целевой функции при снижении жесткости лимитирующего ограничения на единицу, т.е. при увеличении количества лимитирующего ресурса на единицу; называется теневой ценой ресурса. Теневая цена ресурса - это стоимость единицы данного ресурса в оптимальном решении Увеличение объема лимитирующего ресурса на единицу целесообразно только в том случае, если существует возможность его получения по стоимости которая ниже, чем теневая цена данного ресурса.

Слайд 106





Из примера 2 мы знаем, что лимитирующими являются ограничения на фонд рабочего времени и на бензин. Рассмотрим сначала последнее из указанных ограничений. Жесткость ограничения на бензин снижается по мере перемещения линии ограничения параллельно ее исходному положению в противоположном направлении начала
Из примера 2 мы знаем, что лимитирующими являются ограничения на фонд рабочего времени и на бензин. Рассмотрим сначала последнее из указанных ограничений. Жесткость ограничения на бензин снижается по мере перемещения линии ограничения параллельно ее исходному положению в противоположном направлении начала
Описание слайда:
Из примера 2 мы знаем, что лимитирующими являются ограничения на фонд рабочего времени и на бензин. Рассмотрим сначала последнее из указанных ограничений. Жесткость ограничения на бензин снижается по мере перемещения линии ограничения параллельно ее исходному положению в противоположном направлении начала Из примера 2 мы знаем, что лимитирующими являются ограничения на фонд рабочего времени и на бензин. Рассмотрим сначала последнее из указанных ограничений. Жесткость ограничения на бензин снижается по мере перемещения линии ограничения параллельно ее исходному положению в противоположном направлении начала

Слайд 107





Новой оптимальной крайней точкой является теперь точка В. Координаты точки В можно определить, решив систему уравнении для ограничений на фонд рабочего времени и ресурс автопарка X. 
Новой оптимальной крайней точкой является теперь точка В. Координаты точки В можно определить, решив систему уравнении для ограничений на фонд рабочего времени и ресурс автопарка X.
Описание слайда:
Новой оптимальной крайней точкой является теперь точка В. Координаты точки В можно определить, решив систему уравнении для ограничений на фонд рабочего времени и ресурс автопарка X. Новой оптимальной крайней точкой является теперь точка В. Координаты точки В можно определить, решив систему уравнении для ограничений на фонд рабочего времени и ресурс автопарка X.

Слайд 108





Количество бензина, используемого для осуществления нового сочетания рейсов по маршрутам, составит:
Количество бензина, используемого для осуществления нового сочетания рейсов по маршрутам, составит:
Оно превышает начальное количество на 3000 л в неделю. В новой оптимальной точке фонд рабочего времени и ресурс автобусного парка для маршрута  X также используются максимально.
Дополнительное количество бензина в 3000 л позволяет получать дополнительный доход, равный 7500 $ в месяц, следовательно, теневая цена данного ресурса составит: 
7500 : 3000 = 2,50 $ за 1 л. 
Каждый дополнительный литр бензина ведет к увеличению еженедельного дохода в 2,50 $. Из этого следует, что сверхнормативный запас этого ресурса целесообразен только в случае, если стоимость получения дополнительного количества ресурса не превышает 2,50 $. за 1 л.
Описание слайда:
Количество бензина, используемого для осуществления нового сочетания рейсов по маршрутам, составит: Количество бензина, используемого для осуществления нового сочетания рейсов по маршрутам, составит: Оно превышает начальное количество на 3000 л в неделю. В новой оптимальной точке фонд рабочего времени и ресурс автобусного парка для маршрута X также используются максимально. Дополнительное количество бензина в 3000 л позволяет получать дополнительный доход, равный 7500 $ в месяц, следовательно, теневая цена данного ресурса составит: 7500 : 3000 = 2,50 $ за 1 л. Каждый дополнительный литр бензина ведет к увеличению еженедельного дохода в 2,50 $. Из этого следует, что сверхнормативный запас этого ресурса целесообразен только в случае, если стоимость получения дополнительного количества ресурса не превышает 2,50 $. за 1 л.

Слайд 109


Применение методов планирования и прогнозирования к решению управленческих задач на транспорте, слайд №109
Описание слайда:

Слайд 110





Если и далее снижать жесткость ограничения на фонд рабочего времени, то оно перестанет быть лимитирующим, и дальнейшее привлечение дополнительного рабочего времени нецелесообразно. Максимальное число дополнительных человеко-часов можно определить, решив систему ограничений, линии которых пересекаются в точке С:
Если и далее снижать жесткость ограничения на фонд рабочего времени, то оно перестанет быть лимитирующим, и дальнейшее привлечение дополнительного рабочего времени нецелесообразно. Максимальное число дополнительных человеко-часов можно определить, решив систему ограничений, линии которых пересекаются в точке С:
Описание слайда:
Если и далее снижать жесткость ограничения на фонд рабочего времени, то оно перестанет быть лимитирующим, и дальнейшее привлечение дополнительного рабочего времени нецелесообразно. Максимальное число дополнительных человеко-часов можно определить, решив систему ограничений, линии которых пересекаются в точке С: Если и далее снижать жесткость ограничения на фонд рабочего времени, то оно перестанет быть лимитирующим, и дальнейшее привлечение дополнительного рабочего времени нецелесообразно. Максимальное число дополнительных человеко-часов можно определить, решив систему ограничений, линии которых пересекаются в точке С:

Слайд 111





Число используемых в точке С человеко-часов равно:
Число используемых в точке С человеко-часов равно:
Описание слайда:
Число используемых в точке С человеко-часов равно: Число используемых в точке С человеко-часов равно:

Слайд 112





Это значение на 285,7 чел.-ч превосходит первоначальное максимальное значение 4000 чел.-ч. 
Это значение на 285,7 чел.-ч превосходит первоначальное максимальное значение 4000 чел.-ч. 
Новый максимальный доход составляет:
Дополнительное количество человеко-часов в 285,7 позволяет получать дополнительный доход, равный 5 000 $ в месяц (100 000 – 95 000), следовательно, теневая цена данного ресурса составит: 
5 000 : 285,7 = 17,50 $ за 1 чел.-ч. 
Получение максимального сверхнормативного запаса в 285,7 чел.-ч в месяц целесообразно при условии, что стоимость единицы дополнительного человеко­часа не превосходит 17,50 $ в месяц.
Описание слайда:
Это значение на 285,7 чел.-ч превосходит первоначальное максимальное значение 4000 чел.-ч. Это значение на 285,7 чел.-ч превосходит первоначальное максимальное значение 4000 чел.-ч. Новый максимальный доход составляет: Дополнительное количество человеко-часов в 285,7 позволяет получать дополнительный доход, равный 5 000 $ в месяц (100 000 – 95 000), следовательно, теневая цена данного ресурса составит: 5 000 : 285,7 = 17,50 $ за 1 чел.-ч. Получение максимального сверхнормативного запаса в 285,7 чел.-ч в месяц целесообразно при условии, что стоимость единицы дополнительного человеко­часа не превосходит 17,50 $ в месяц.



Похожие презентации
Mypresentation.ru
Загрузить презентацию