🗊Скачать презентацию Вакуумные приборы

Категория: Физика
Нажмите для полного просмотра!
Скачать презентацию Вакуумные приборы , слайд №1Скачать презентацию Вакуумные приборы , слайд №2Скачать презентацию Вакуумные приборы , слайд №3Скачать презентацию Вакуумные приборы , слайд №4Скачать презентацию Вакуумные приборы , слайд №5Скачать презентацию Вакуумные приборы , слайд №6Скачать презентацию Вакуумные приборы , слайд №7Скачать презентацию Вакуумные приборы , слайд №8Скачать презентацию Вакуумные приборы , слайд №9Скачать презентацию Вакуумные приборы , слайд №10Скачать презентацию Вакуумные приборы , слайд №11Скачать презентацию Вакуумные приборы , слайд №12Скачать презентацию Вакуумные приборы , слайд №13Скачать презентацию Вакуумные приборы , слайд №14Скачать презентацию Вакуумные приборы , слайд №15


Слайды и текст этой презентации


Слайд 1





Вакуумные приборы
Описание слайда:
Вакуумные приборы

Слайд 2





Вакуум
Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного.
Различают два вида вакуума:
Физический вакуум
Технический вакуум
Описание слайда:
Вакуум Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Различают два вида вакуума: Физический вакуум Технический вакуум

Слайд 3





Технический вакуум
 На практике сильно разреженный газ называют техническим вакуумом. 
 В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. 
 В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Описание слайда:
Технический вакуум На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Слайд 4





Физический вакуум
 Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей.
 В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.
Описание слайда:
Физический вакуум Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

Слайд 5





Вакуумный насос
   Вакуумный насос — устройство, служащее для удаления (откачки) газов или паров до определённого уровня давления (технического вакуума).
Описание слайда:
Вакуумный насос Вакуумный насос — устройство, служащее для удаления (откачки) газов или паров до определённого уровня давления (технического вакуума).

Слайд 6





Принцип работы
  Объёмные насосы осуществляют откачку за счёт периодического изменения объёма рабочей камеры. В основном они используются для получения предварительного разрежения. К ним относятся поршневые, жидкостно-кольцевые, ротационные (вращательные). Наибольшее распространение в вакуумной технике получили вращательные насосы.
Описание слайда:
Принцип работы Объёмные насосы осуществляют откачку за счёт периодического изменения объёма рабочей камеры. В основном они используются для получения предварительного разрежения. К ним относятся поршневые, жидкостно-кольцевые, ротационные (вращательные). Наибольшее распространение в вакуумной технике получили вращательные насосы.

Слайд 7


Скачать презентацию Вакуумные приборы , слайд №7
Описание слайда:

Слайд 8





Вакуумметр
  Вакуумме́р — вакуумный манометр, прибор для измерения давления разреженных газов.
Описание слайда:
Вакуумметр Вакуумме́р — вакуумный манометр, прибор для измерения давления разреженных газов.

Слайд 9





Турбомолекулярный насос

Турбомолекулярный насос - один из видов вакуумных насосов, служащий для создания и поддержки высокого вакуума. Действие турбомолекулярного насоса основано на сообщении молекулам откачиваемого газа дополнительной скорости в направлении откачки вращающимся ротором. Ротор состоит из системы дисков. Скорость вращения ротора - десятки тысяч оборотов в минуту. Для работы требует применения форвакуумного насоса.
Описание слайда:
Турбомолекулярный насос Турбомолекулярный насос - один из видов вакуумных насосов, служащий для создания и поддержки высокого вакуума. Действие турбомолекулярного насоса основано на сообщении молекулам откачиваемого газа дополнительной скорости в направлении откачки вращающимся ротором. Ротор состоит из системы дисков. Скорость вращения ротора - десятки тысяч оборотов в минуту. Для работы требует применения форвакуумного насоса.

Слайд 10





Гиротрон
Гиротрон — электровакуумный СВЧ прибор, с электронным пучком, вращающимся с циклотронной частотой в сильном магнитном поле. Представляет собой разновидность мазера на свободных электронах.
Одним из применений является нагрев плазмы в установках термоядерного синтеза с магнитным удержанием плазмы.
Описание слайда:
Гиротрон Гиротрон — электровакуумный СВЧ прибор, с электронным пучком, вращающимся с циклотронной частотой в сильном магнитном поле. Представляет собой разновидность мазера на свободных электронах. Одним из применений является нагрев плазмы в установках термоядерного синтеза с магнитным удержанием плазмы.

Слайд 11





Клистрон
Клистрон — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ поля.
Описание слайда:
Клистрон Клистрон — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ поля.

Слайд 12





Клистроны подразделяются на 2 класса: пролётные и отражательные.
Клистроны подразделяются на 2 класса: пролётные и отражательные.
В пролётном клистроне электроны последовательно пролетают сквозь зазоры объёмных резонаторов. В простейшем случае резонаторов 2: входной и выходной. Дальнейшим развитием пролётных клистронов являются каскадные многорезонаторные клистроны, которые имеют один или несколько промежуточных резонаторов, расположенных между входным и выходным резонаторами.

В отражательном клистроне используется один резонатор, через который электронный поток проходит дважды, отражаясь от специального электрода — отражателя.
Описание слайда:
Клистроны подразделяются на 2 класса: пролётные и отражательные. Клистроны подразделяются на 2 класса: пролётные и отражательные. В пролётном клистроне электроны последовательно пролетают сквозь зазоры объёмных резонаторов. В простейшем случае резонаторов 2: входной и выходной. Дальнейшим развитием пролётных клистронов являются каскадные многорезонаторные клистроны, которые имеют один или несколько промежуточных резонаторов, расположенных между входным и выходным резонаторами. В отражательном клистроне используется один резонатор, через который электронный поток проходит дважды, отражаясь от специального электрода — отражателя.

Слайд 13





Изобретатели клистрона
Первые конструкции пролётных клистронов были предложены и осуществлены в 1938 Расселом Варианом и Сигуртом Варианом.
Отражательный клистрон был разработан в 1940 году Н. Д. Девятковым, Е. Н. Данильцевым, И. В. Пискуновым и независимо В. Ф. Коваленко.
Описание слайда:
Изобретатели клистрона Первые конструкции пролётных клистронов были предложены и осуществлены в 1938 Расселом Варианом и Сигуртом Варианом. Отражательный клистрон был разработан в 1940 году Н. Д. Девятковым, Е. Н. Данильцевым, И. В. Пискуновым и независимо В. Ф. Коваленко.

Слайд 14





Лампа бегущей волны
Лампа бегущей волны (ЛБВ) — электровакуумный прибор, в котором для генерирования и/или усиления электромагнитных колебаний СВЧ используется взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении.
Описание слайда:
Лампа бегущей волны Лампа бегущей волны (ЛБВ) — электровакуумный прибор, в котором для генерирования и/или усиления электромагнитных колебаний СВЧ используется взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении.

Слайд 15





Лампа бегущей волны была впервые создана Рудольфом Компфнером (Rudolf Kompfner) в 1943 году (по другим сведениям в 1944).
Лампа бегущей волны была впервые создана Рудольфом Компфнером (Rudolf Kompfner) в 1943 году (по другим сведениям в 1944).
Лампы бегущей волны подразделяются на два класса: ЛБВ типа О и ЛБВ типа М.
В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле в таких лампах направлено вдоль направления распространения пучка и служит лишь для фокусировки последнего.
В приборах типа М в энергию СВЧ поля переходит потенциальная энергия электронов, смещающихся в результате многократного торможения и разгона от катода к аноду. Средняя кинетическая энергия при этом остается постоянной. Магнитное поле в таких приборах направлено перпендикулярно направлению распространения пучка.
Описание слайда:
Лампа бегущей волны была впервые создана Рудольфом Компфнером (Rudolf Kompfner) в 1943 году (по другим сведениям в 1944). Лампа бегущей волны была впервые создана Рудольфом Компфнером (Rudolf Kompfner) в 1943 году (по другим сведениям в 1944). Лампы бегущей волны подразделяются на два класса: ЛБВ типа О и ЛБВ типа М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле в таких лампах направлено вдоль направления распространения пучка и служит лишь для фокусировки последнего. В приборах типа М в энергию СВЧ поля переходит потенциальная энергия электронов, смещающихся в результате многократного торможения и разгона от катода к аноду. Средняя кинетическая энергия при этом остается постоянной. Магнитное поле в таких приборах направлено перпендикулярно направлению распространения пучка.


Презентацию на тему Вакуумные приборы можно скачать бесплатно ниже:

Похожие презентации
Mypresentation.ru
Загрузить презентацию