🗊Скачать презентацию Третий закон Менделя

Категория: Биология
Нажмите для полного просмотра!
Скачать презентацию Третий закон Менделя , слайд №1Скачать презентацию Третий закон Менделя , слайд №2Скачать презентацию Третий закон Менделя , слайд №3Скачать презентацию Третий закон Менделя , слайд №4Скачать презентацию Третий закон Менделя , слайд №5Скачать презентацию Третий закон Менделя , слайд №6Скачать презентацию Третий закон Менделя , слайд №7Скачать презентацию Третий закон Менделя , слайд №8Скачать презентацию Третий закон Менделя , слайд №9


Слайды и текст этой презентации


Слайд 1





Третий закон Менделя
Описание слайда:
Третий закон Менделя

Слайд 2





Ди- и полигибридное скрещивание
Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным. Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам - три- и полигетерозиготными соответственно.
Описание слайда:
Ди- и полигибридное скрещивание Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным. Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам - три- и полигетерозиготными соответственно.

Слайд 3





Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые.
Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые.
Описание слайда:
Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые. Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые.

Слайд 4


Скачать презентацию Третий закон Менделя , слайд №4
Описание слайда:

Слайд 5





При слиянии гамет возможно появление 16 комбинаций. 
При слиянии гамет возможно появление 16 комбинаций. 
Произошло расщепление по фенотипу в соотношении 9:3:3:1 следующим образом: 9 особей с двумя доминантными признаками I (желтый, гладкий), 1 особь с двумя рецессивными признаками  (зеленый, морщинистый), 3 особи с одним доминантным, а други­ми — рецессивными признаками (желтый, морщинистый), 3 особи с другими доминантным и рецессивным признаками (зеленый, гладкий) .
Описание слайда:
При слиянии гамет возможно появление 16 комбинаций. При слиянии гамет возможно появление 16 комбинаций. Произошло расщепление по фенотипу в соотношении 9:3:3:1 следующим образом: 9 особей с двумя доминантными признаками I (желтый, гладкий), 1 особь с двумя рецессивными признаками (зеленый, морщинистый), 3 особи с одним доминантным, а други­ми — рецессивными признаками (желтый, морщинистый), 3 особи с другими доминантным и рецессивным признаками (зеленый, гладкий) .

Слайд 6





Такую сложную комбинацию сочетания фенотипов Г. Мендель объяснил исходя из предположения о наследственных задатках или генах, которые отвечают за отдельные признаки. 
Такую сложную комбинацию сочетания фенотипов Г. Мендель объяснил исходя из предположения о наследственных задатках или генах, которые отвечают за отдельные признаки. 
При образовании половых клеток гены разных пар попадают в них независимо друг от друга, комбинируясь во всевозможных сочетаниях. 
Сложность расщепления представляет собой комбинационный ряд из двум моногибридных расщеплений по форме и цвету семян. Если мы подсчитаем число гладких и морщинистых горошин, а также числя желтых и зеленых, то получим соотношение: 12 желтых:4  зеленых (3 : 1) и 12 гладких: 4 морщинистых (3 : 1). 
Г. Мендель показал, что дигибридное скрещивание — это комбинация двух моногибридных скрещиваний. Таким образом, был выведен закон о независимом комбинировании признаков.
Описание слайда:
Такую сложную комбинацию сочетания фенотипов Г. Мендель объяснил исходя из предположения о наследственных задатках или генах, которые отвечают за отдельные признаки. Такую сложную комбинацию сочетания фенотипов Г. Мендель объяснил исходя из предположения о наследственных задатках или генах, которые отвечают за отдельные признаки. При образовании половых клеток гены разных пар попадают в них независимо друг от друга, комбинируясь во всевозможных сочетаниях. Сложность расщепления представляет собой комбинационный ряд из двум моногибридных расщеплений по форме и цвету семян. Если мы подсчитаем число гладких и морщинистых горошин, а также числя желтых и зеленых, то получим соотношение: 12 желтых:4 зеленых (3 : 1) и 12 гладких: 4 морщинистых (3 : 1). Г. Мендель показал, что дигибридное скрещивание — это комбинация двух моногибридных скрещиваний. Таким образом, был выведен закон о независимом комбинировании признаков.

Слайд 7





В этом и состоит проявление третьего закона Менделя, который гласит: наследственные признаки передаются поколению независимо друг от друга, сочетаясь во всех возможных комбинациях. Но это происходит только в том случае, если гены, отвечающие за данные признаки, находятся в различных (негомологичных) хромосомах.
В этом и состоит проявление третьего закона Менделя, который гласит: наследственные признаки передаются поколению независимо друг от друга, сочетаясь во всех возможных комбинациях. Но это происходит только в том случае, если гены, отвечающие за данные признаки, находятся в различных (негомологичных) хромосомах.
Описание слайда:
В этом и состоит проявление третьего закона Менделя, который гласит: наследственные признаки передаются поколению независимо друг от друга, сочетаясь во всех возможных комбинациях. Но это происходит только в том случае, если гены, отвечающие за данные признаки, находятся в различных (негомологичных) хромосомах. В этом и состоит проявление третьего закона Менделя, который гласит: наследственные признаки передаются поколению независимо друг от друга, сочетаясь во всех возможных комбинациях. Но это происходит только в том случае, если гены, отвечающие за данные признаки, находятся в различных (негомологичных) хромосомах.

Слайд 8





Цитологические основы законов наследования
наследование каждого признака контролируется особым фактором – геном
ген – элементарная структурно-функциональная единица наследственности
гены находятся в клетках и передаются от родителей потомству при делении клетки
гены расположены в хромосомах
ген – участок хромосомы
гены в хромосомах расположены последовательно
парные признаки контролируются аллельными генами или аллелями гена
 аллельные гены расположены в гомологичных хромосомах
 гомологичные хромосомы – парные, имеют одинаковую форму, размеры
хромосома содержит только один аллель гена 
 в гаплоидном наборе хромосом содержится только 1 аллель гена
 в диплоидном наборе хромосом содержится только 2 аллеля гена
Описание слайда:
Цитологические основы законов наследования наследование каждого признака контролируется особым фактором – геном ген – элементарная структурно-функциональная единица наследственности гены находятся в клетках и передаются от родителей потомству при делении клетки гены расположены в хромосомах ген – участок хромосомы гены в хромосомах расположены последовательно парные признаки контролируются аллельными генами или аллелями гена аллельные гены расположены в гомологичных хромосомах гомологичные хромосомы – парные, имеют одинаковую форму, размеры хромосома содержит только один аллель гена в гаплоидном наборе хромосом содержится только 1 аллель гена в диплоидном наборе хромосом содержится только 2 аллеля гена

Слайд 9





Цитологические основы законов наследования
при мейозе в каждую гамету уходит одна из пары гомологичных хромосом и один из аллелей гена
 поэтому гены в гаметах не смешиваются и остаются «чистыми»
 распределение хромосом по гаметам происходит случайным образом
после оплодотворения у зиготы одна из гомологичных хромосом от отца, другая от матери
у гетерозиготы в парах гомологичных хромосом разные аллели гена, у гомозиготы – одинаковые аллели
при оплодотворении сочетание гамет происходит случайно
разные гены находятся в разных хромосомах
1 ген контролирует 1 признак (моногенность)
Описание слайда:
Цитологические основы законов наследования при мейозе в каждую гамету уходит одна из пары гомологичных хромосом и один из аллелей гена поэтому гены в гаметах не смешиваются и остаются «чистыми» распределение хромосом по гаметам происходит случайным образом после оплодотворения у зиготы одна из гомологичных хромосом от отца, другая от матери у гетерозиготы в парах гомологичных хромосом разные аллели гена, у гомозиготы – одинаковые аллели при оплодотворении сочетание гамет происходит случайно разные гены находятся в разных хромосомах 1 ген контролирует 1 признак (моногенность)


Презентацию на тему Третий закон Менделя можно скачать бесплатно ниже:

Похожие презентации
Mypresentation.ru
Загрузить презентацию