🗊Шкала электромагнитных волн

Категория: Физика
Нажмите для полного просмотра!
Шкала электромагнитных волн, слайд №1Шкала электромагнитных волн, слайд №2Шкала электромагнитных волн, слайд №3Шкала электромагнитных волн, слайд №4Шкала электромагнитных волн, слайд №5Шкала электромагнитных волн, слайд №6Шкала электромагнитных волн, слайд №7Шкала электромагнитных волн, слайд №8Шкала электромагнитных волн, слайд №9Шкала электромагнитных волн, слайд №10Шкала электромагнитных волн, слайд №11Шкала электромагнитных волн, слайд №12Шкала электромагнитных волн, слайд №13Шкала электромагнитных волн, слайд №14Шкала электромагнитных волн, слайд №15Шкала электромагнитных волн, слайд №16Шкала электромагнитных волн, слайд №17Шкала электромагнитных волн, слайд №18Шкала электромагнитных волн, слайд №19Шкала электромагнитных волн, слайд №20Шкала электромагнитных волн, слайд №21Шкала электромагнитных волн, слайд №22Шкала электромагнитных волн, слайд №23Шкала электромагнитных волн, слайд №24Шкала электромагнитных волн, слайд №25Шкала электромагнитных волн, слайд №26Шкала электромагнитных волн, слайд №27

Содержание

Вы можете ознакомиться и скачать Шкала электромагнитных волн. Презентация содержит 27 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Шкала электромагнитных волн
Описание слайда:
Шкала электромагнитных волн

Слайд 2





Шкала электромагнитных волн представляет собой непрерывную последовательность частот и длин электромагнитных излучений, которые являются распространяющимся в пространстве переменным магнитным полем. Теория электромагнитных явлений Джеймса Максвелла позволила установить, что в природе существуют электромагнитные волны разных длин. 
Шкала электромагнитных волн представляет собой непрерывную последовательность частот и длин электромагнитных излучений, которые являются распространяющимся в пространстве переменным магнитным полем. Теория электромагнитных явлений Джеймса Максвелла позволила установить, что в природе существуют электромагнитные волны разных длин.
Описание слайда:
Шкала электромагнитных волн представляет собой непрерывную последовательность частот и длин электромагнитных излучений, которые являются распространяющимся в пространстве переменным магнитным полем. Теория электромагнитных явлений Джеймса Максвелла позволила установить, что в природе существуют электромагнитные волны разных длин. Шкала электромагнитных волн представляет собой непрерывную последовательность частот и длин электромагнитных излучений, которые являются распространяющимся в пространстве переменным магнитным полем. Теория электромагнитных явлений Джеймса Максвелла позволила установить, что в природе существуют электромагнитные волны разных длин.

Слайд 3





Радиоволны
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). 
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Описание слайда:
Радиоволны Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Слайд 4





Радиоволна
Описание слайда:
Радиоволна

Слайд 5





Распределение спектра
Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:
Описание слайда:
Распределение спектра Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Слайд 6


Шкала электромагнитных волн, слайд №6
Описание слайда:

Слайд 7





Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты. 

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.
Описание слайда:
Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты. Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.

Слайд 8


Шкала электромагнитных волн, слайд №8
Описание слайда:

Слайд 9





Инфракрасное излучение
Инфракрасное излучение – это часть спектра излучения Солнца, которая непосредственно примыкает к красной части видимой области спектра и которая обладает способностью нагревать большинство предметов. Человеческий глаз не в состоянии видеть в этой части спектра, но мы можем чувствовать тепло. Как известно, любой объект, чья температура превышает (– 273) градусов Цельсия излучает, а спектр его излучения определяется только его температурой и излучательной способностью. Инфракрасное излучение имеет две важные характеристики : длину волны (частоту) излучения и интенсивность.
Описание слайда:
Инфракрасное излучение Инфракрасное излучение – это часть спектра излучения Солнца, которая непосредственно примыкает к красной части видимой области спектра и которая обладает способностью нагревать большинство предметов. Человеческий глаз не в состоянии видеть в этой части спектра, но мы можем чувствовать тепло. Как известно, любой объект, чья температура превышает (– 273) градусов Цельсия излучает, а спектр его излучения определяется только его температурой и излучательной способностью. Инфракрасное излучение имеет две важные характеристики : длину волны (частоту) излучения и интенсивность.

Слайд 10


Шкала электромагнитных волн, слайд №10
Описание слайда:

Слайд 11





Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. 
Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. 
В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм(так называемая длинноволновая часть инфракрасного диапазона), оказывающая на организм человека по - настоящему уникальное полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела с максимумом на длине волны около 10 мкм. Поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё».Самый известный естественный источник инфракрасных лучей на нашей Земле - это Солнце, а самый известный на Руси искусственный источник длинноволновых инфракрасных лучей - это русская печь, и каждый человек обязательно испытывал на себе их благотворное влияние.
Описание слайда:
Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм(так называемая длинноволновая часть инфракрасного диапазона), оказывающая на организм человека по - настоящему уникальное полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела с максимумом на длине волны около 10 мкм. Поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё».Самый известный естественный источник инфракрасных лучей на нашей Земле - это Солнце, а самый известный на Руси искусственный источник длинноволновых инфракрасных лучей - это русская печь, и каждый человек обязательно испытывал на себе их благотворное влияние.

Слайд 12





Использование

ИК (инфракрасные) диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Они не отвлекают внимание человека в силу своей невидимости. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей.Положительным побочным эффектом так же является стерилизация пищевых продуктов, увеличение стойкости к коррозии покрываемых красками поверхностей. Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо. Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды).
Описание слайда:
Использование ИК (инфракрасные) диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Они не отвлекают внимание человека в силу своей невидимости. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей.Положительным побочным эффектом так же является стерилизация пищевых продуктов, увеличение стойкости к коррозии покрываемых красками поверхностей. Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо. Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды).

Слайд 13





Также инфракрасное излучение используется в лечении.
Также инфракрасное излучение используется в лечении.
Описание слайда:
Также инфракрасное излучение используется в лечении. Также инфракрасное излучение используется в лечении.

Слайд 14





Инфракрасные массажоры
Описание слайда:
Инфракрасные массажоры

Слайд 15





Инфракрасная сауна
Описание слайда:
Инфракрасная сауна

Слайд 16





Что же такое ультрафиолет? 

       
      Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нанометров. 
Вся область ультрафиолетового излучения (или UV) условно делится на ближнюю (l = 200-380 нм) и дальнюю, или вакуумную (l = 100-200 нм); причем последнее название обусловлено тем, что излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.
Описание слайда:
Что же такое ультрафиолет?              Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нанометров. Вся область ультрафиолетового излучения (или UV) условно делится на ближнюю (l = 200-380 нм) и дальнюю, или вакуумную (l = 100-200 нм); причем последнее название обусловлено тем, что излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Слайд 17





Ультрафиолет
Описание слайда:
Ультрафиолет

Слайд 18





Основным источником ультрафиолетового излучения является Солнце, хотя некоторые источники искусственного освещения также имеют в своем спектре ультрафиолетовую составляющую, кроме того, оно возникает и при проведении газосварочных работ. Ближний диапазон UV-лучей, в свою очередь, подразделяется на три составляющие - UVA, UVB и UVC, различающиеся по своему влиянию на организм человека. 


Основным источником ультрафиолетового излучения является Солнце, хотя некоторые источники искусственного освещения также имеют в своем спектре ультрафиолетовую составляющую, кроме того, оно возникает и при проведении газосварочных работ. Ближний диапазон UV-лучей, в свою очередь, подразделяется на три составляющие - UVA, UVB и UVC, различающиеся по своему влиянию на организм человека.
Описание слайда:
Основным источником ультрафиолетового излучения является Солнце, хотя некоторые источники искусственного освещения также имеют в своем спектре ультрафиолетовую составляющую, кроме того, оно возникает и при проведении газосварочных работ. Ближний диапазон UV-лучей, в свою очередь, подразделяется на три составляющие - UVA, UVB и UVC, различающиеся по своему влиянию на организм человека. Основным источником ультрафиолетового излучения является Солнце, хотя некоторые источники искусственного освещения также имеют в своем спектре ультрафиолетовую составляющую, кроме того, оно возникает и при проведении газосварочных работ. Ближний диапазон UV-лучей, в свою очередь, подразделяется на три составляющие - UVA, UVB и UVC, различающиеся по своему влиянию на организм человека.

Слайд 19





Солнце
Описание слайда:
Солнце

Слайд 20





Воздействие на человека
Глаза испытывают воздействие всего достаточно широкого УФ-диапазона излучения. Его коротковолновая часть поглощается роговицей, которая может быть повреждена при длительном воздействии излучения волн с l = 290-310 нм. С увеличением длин волн ультрафиолета возрастает глубина его проникновения внутрь глаза, причем бульшую часть этого излучения поглощает хрусталик. 
       
      
Описание слайда:
Воздействие на человека Глаза испытывают воздействие всего достаточно широкого УФ-диапазона излучения. Его коротковолновая часть поглощается роговицей, которая может быть повреждена при длительном воздействии излучения волн с l = 290-310 нм. С увеличением длин волн ультрафиолета возрастает глубина его проникновения внутрь глаза, причем бульшую часть этого излучения поглощает хрусталик.              

Слайд 21





Хрусталик глаза человека является великолепным фильтром, созданным природой для защиты внутренних структур глаза. Он поглощает УФ-излучение в диапазоне от 300 до 400 нм, оберегая сетчатку от воздействия потенциально опасных длин волн. Тем не менее при долговременном регулярном воздействии ультрафиолета развиваются повреждения самого хрусталика, с годами он становится желто-коричневым, мутным и в целом - непригодным к функционированию по назначению (то есть образуется катаракта). В этом случае назначается операция по удалению катаракты.
Хрусталик глаза человека является великолепным фильтром, созданным природой для защиты внутренних структур глаза. Он поглощает УФ-излучение в диапазоне от 300 до 400 нм, оберегая сетчатку от воздействия потенциально опасных длин волн. Тем не менее при долговременном регулярном воздействии ультрафиолета развиваются повреждения самого хрусталика, с годами он становится желто-коричневым, мутным и в целом - непригодным к функционированию по назначению (то есть образуется катаракта). В этом случае назначается операция по удалению катаракты.
Описание слайда:
Хрусталик глаза человека является великолепным фильтром, созданным природой для защиты внутренних структур глаза. Он поглощает УФ-излучение в диапазоне от 300 до 400 нм, оберегая сетчатку от воздействия потенциально опасных длин волн. Тем не менее при долговременном регулярном воздействии ультрафиолета развиваются повреждения самого хрусталика, с годами он становится желто-коричневым, мутным и в целом - непригодным к функционированию по назначению (то есть образуется катаракта). В этом случае назначается операция по удалению катаракты. Хрусталик глаза человека является великолепным фильтром, созданным природой для защиты внутренних структур глаза. Он поглощает УФ-излучение в диапазоне от 300 до 400 нм, оберегая сетчатку от воздействия потенциально опасных длин волн. Тем не менее при долговременном регулярном воздействии ультрафиолета развиваются повреждения самого хрусталика, с годами он становится желто-коричневым, мутным и в целом - непригодным к функционированию по назначению (то есть образуется катаракта). В этом случае назначается операция по удалению катаракты.

Слайд 22


Шкала электромагнитных волн, слайд №22
Описание слайда:

Слайд 23





Защитные функции организма

В естественных условиях вслед за эритемой развивается пигментация кожи - загар. Спектральный максимум пигментации (340 нм) не совпадает ни с одним из пиков эритемной чувствительности. Поэтому, подбирая источник излучения можно вызвать пигментацию без эритемы и наоборот.
Описание слайда:
Защитные функции организма В естественных условиях вслед за эритемой развивается пигментация кожи - загар. Спектральный максимум пигментации (340 нм) не совпадает ни с одним из пиков эритемной чувствительности. Поэтому, подбирая источник излучения можно вызвать пигментацию без эритемы и наоборот.

Слайд 24





Негативное воздействие ультрафиолетового облучения

  острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А.
 отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например, к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений - результат воздействия продуктов свободнорадикальных реакций.
Описание слайда:
Негативное воздействие ультрафиолетового облучения острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А. отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например, к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений - результат воздействия продуктов свободнорадикальных реакций.

Слайд 25





Основные меры безопасности и противопоказания к использованию терапевтического УФ-облучения.

Перед использованием УФ-облучения от искусственных источников необходимо посетить врача с целью подбора и установления минимальной эритемной дозы (МЭД), которая является сугубо индивидуальным параметром для каждого человека.

Если после первого сеанса обнаружится какая-либо неблагоприятная реакция, дальнейшее использование УФ-облучения не рекомендуется.
Описание слайда:
Основные меры безопасности и противопоказания к использованию терапевтического УФ-облучения. Перед использованием УФ-облучения от искусственных источников необходимо посетить врача с целью подбора и установления минимальной эритемной дозы (МЭД), которая является сугубо индивидуальным параметром для каждого человека. Если после первого сеанса обнаружится какая-либо неблагоприятная реакция, дальнейшее использование УФ-облучения не рекомендуется.

Слайд 26





Вертикальный турбо-солярий
Описание слайда:
Вертикальный турбо-солярий

Слайд 27





Очень осторожным с естественным и искусственным УФ-облучением всего тела следует быть следующим категориям людей: 

  Гинекологическим больным (ультрафиолет может усилить воспалительные явления). 
  Имеющих большое количество родимых пятен на теле, или участки скопления родимых пятен, или большие родимые пятна 
  Лечившимся от рака кожи в прошлом 
  Работающим в течение недели в помещении, а затем длительно загорающим в выходные дни 
  Живущим или отдыхающим в тропиках и субтропиках 
  Имеющим веснушки или ожоги 
  Альбиносам, блондинам, русоволосым и рыжеволосым людям 
  Имеющим среди близких родственников больных раком кожи, особенно меланомой 
  Живущим или отдыхающим в горах (каждые 1000 метров над уровнем моря прибавляют 4% - 5% солнечной активности) 
  Длительно пребывающим, в силу различных причин, на свежем воздухе 
Перенесшим трансплантацию какого-либо органа 
  Страдающим некоторыми хроническими заболеваниями, например, системной красной волчанкой
Описание слайда:
Очень осторожным с естественным и искусственным УФ-облучением всего тела следует быть следующим категориям людей: Гинекологическим больным (ультрафиолет может усилить воспалительные явления). Имеющих большое количество родимых пятен на теле, или участки скопления родимых пятен, или большие родимые пятна Лечившимся от рака кожи в прошлом Работающим в течение недели в помещении, а затем длительно загорающим в выходные дни Живущим или отдыхающим в тропиках и субтропиках Имеющим веснушки или ожоги Альбиносам, блондинам, русоволосым и рыжеволосым людям Имеющим среди близких родственников больных раком кожи, особенно меланомой Живущим или отдыхающим в горах (каждые 1000 метров над уровнем моря прибавляют 4% - 5% солнечной активности) Длительно пребывающим, в силу различных причин, на свежем воздухе Перенесшим трансплантацию какого-либо органа Страдающим некоторыми хроническими заболеваниями, например, системной красной волчанкой



Похожие презентации
Mypresentation.ru
Загрузить презентацию