🗊Сверхпроводимость

Категория: Физика
Нажмите для полного просмотра!
Сверхпроводимость, слайд №1Сверхпроводимость, слайд №2Сверхпроводимость, слайд №3Сверхпроводимость, слайд №4Сверхпроводимость, слайд №5Сверхпроводимость, слайд №6Сверхпроводимость, слайд №7Сверхпроводимость, слайд №8Сверхпроводимость, слайд №9Сверхпроводимость, слайд №10Сверхпроводимость, слайд №11Сверхпроводимость, слайд №12Сверхпроводимость, слайд №13Сверхпроводимость, слайд №14Сверхпроводимость, слайд №15Сверхпроводимость, слайд №16Сверхпроводимость, слайд №17Сверхпроводимость, слайд №18

Вы можете ознакомиться и скачать Сверхпроводимость. Презентация содержит 18 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Сверхпроводимость
Описание слайда:
Сверхпроводимость

Слайд 2





Сверхпроводимость-это свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения . Известны несколько десятков  чистых элементов , сплавов и керамик , переходящих в сверхпроводящее состояние. 
Сверхпроводимость-это свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения . Известны несколько десятков  чистых элементов , сплавов и керамик , переходящих в сверхпроводящее состояние.
Описание слайда:
Сверхпроводимость-это свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения . Известны несколько десятков чистых элементов , сплавов и керамик , переходящих в сверхпроводящее состояние. Сверхпроводимость-это свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения . Известны несколько десятков чистых элементов , сплавов и керамик , переходящих в сверхпроводящее состояние.

Слайд 3





История открытия
Описание слайда:
История открытия

Слайд 4





 В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили ожижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.
 В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили ожижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.
В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.
А 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.
Нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.
Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга — Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость на микроскопическом уровне получила объяснение в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.
Описание слайда:
В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили ожижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили ожижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород. В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями. А 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками. Нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году. Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга — Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость на микроскопическом уровне получила объяснение в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Слайд 5





Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.
Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.
Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².
В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.
В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La—Sr—Cu—O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y—Ba—Cu—O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg—Ba—Ca—Cu—O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.
Описание слайда:
Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е. Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е. Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см². В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя. В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La—Sr—Cu—O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y—Ba—Cu—O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg—Ba—Ca—Cu—O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

Слайд 6





Фазовый переход в сверхпроводящее состояние
Описание слайда:
Фазовый переход в сверхпроводящее состояние

Слайд 7





Эффект Мейснера
Описание слайда:
Эффект Мейснера

Слайд 8





Эффект Литтла-Паркса
В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины магнитного потока. Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости.
Описание слайда:
Эффект Литтла-Паркса В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины магнитного потока. Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости.

Слайд 9





Изотопический эффект
Изотопический эффект у сверхпроводников заключается в том, что температуры Тс обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента.
Описание слайда:
Изотопический эффект Изотопический эффект у сверхпроводников заключается в том, что температуры Тс обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента.

Слайд 10





Момент Лондона
Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.
Описание слайда:
Момент Лондона Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

Слайд 11





Магнитно-вихревая теория
Когда сверхпроводник попадает в магнитное поле, это поле проникает в него в виде тонких потоков, называемых вихрями. Вокруг каждого такого вихря возникают электрические токи. Эти вихри тиражируют себя и рассеиваются, когда температура материала возрастает. Поскольку вихри имеют тенденцию прикрепляться к длинным тонким отверстиям в материале, называемым призматическими дефектами, исследователи предположили, что вихри будут вести себя иначе при наличии таких дефектов. И они выяснили: когда вихрей больше, чем отверстий, вихри начинают рассеиваться в два этапа вместо одного, так как температура повышается.
Если удастся задержать процесс рассеивания вихревых потоков, то будет возможно добиться эффекта сверхпроводимости при более высоких температурах.
Описание слайда:
Магнитно-вихревая теория Когда сверхпроводник попадает в магнитное поле, это поле проникает в него в виде тонких потоков, называемых вихрями. Вокруг каждого такого вихря возникают электрические токи. Эти вихри тиражируют себя и рассеиваются, когда температура материала возрастает. Поскольку вихри имеют тенденцию прикрепляться к длинным тонким отверстиям в материале, называемым призматическими дефектами, исследователи предположили, что вихри будут вести себя иначе при наличии таких дефектов. И они выяснили: когда вихрей больше, чем отверстий, вихри начинают рассеиваться в два этапа вместо одного, так как температура повышается. Если удастся задержать процесс рассеивания вихревых потоков, то будет возможно добиться эффекта сверхпроводимости при более высоких температурах.

Слайд 12





Теория БКШ
Теория БКШ (Теория Бардина, Купера, Шриффера) — микроскопическая теория сверхпроводников, являющаяся на сегодняшний день доминирующей. В её основе лежит концепция куперовской пары: коррелированного состояния электронов с противоположными спинами и импульсами. В 1972 году создатели теории были удостоены Нобелевской премии по физике. Одновременно микроскопическая теория сверхпроводимости была построена с использованием так называемых преобразований Боголюбова (англ.) Н. Н. Боголюбовым, показавшим, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа[1][2].
Электроны вблизи поверхности Ферми могут испытывать эффективное притяжение, взаимодействуя друг с другом посредством фононов. Эти электроны объединяются в пары, называемые часто куперовскими. Куперовские пары, в отличие от отдельных электронов, обладают рядом свойств, характерных для бозонов, которые при охлаждении могут переходить в одно квантовое состояние. Можно сказать, что эта особенность позволяет парам двигаться без столкновения с решёткой и оставшимися электронами, то есть без потерь энергии.
Отметим, что в теории БКШ понятие куперовской пары четко не определено и в явном виде не вводится. Куперовская пара хорошо определена лишь в двухчастичной задаче Купера, которая считается вспомогательной для построения многочастичной теории БКШ.
Описание слайда:
Теория БКШ Теория БКШ (Теория Бардина, Купера, Шриффера) — микроскопическая теория сверхпроводников, являющаяся на сегодняшний день доминирующей. В её основе лежит концепция куперовской пары: коррелированного состояния электронов с противоположными спинами и импульсами. В 1972 году создатели теории были удостоены Нобелевской премии по физике. Одновременно микроскопическая теория сверхпроводимости была построена с использованием так называемых преобразований Боголюбова (англ.) Н. Н. Боголюбовым, показавшим, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа[1][2]. Электроны вблизи поверхности Ферми могут испытывать эффективное притяжение, взаимодействуя друг с другом посредством фононов. Эти электроны объединяются в пары, называемые часто куперовскими. Куперовские пары, в отличие от отдельных электронов, обладают рядом свойств, характерных для бозонов, которые при охлаждении могут переходить в одно квантовое состояние. Можно сказать, что эта особенность позволяет парам двигаться без столкновения с решёткой и оставшимися электронами, то есть без потерь энергии. Отметим, что в теории БКШ понятие куперовской пары четко не определено и в явном виде не вводится. Куперовская пара хорошо определена лишь в двухчастичной задаче Купера, которая считается вспомогательной для построения многочастичной теории БКШ.

Слайд 13





Теория Гинзбурга — Ландау
Теория Гинзбурга — Ландау — созданная в начале 1950-х годов В. Л. Гинзбургом и Л. Д. Ландау феноменологическая теория сверхпроводимости.
Теория построена исходя из следующего вида лагранжиана:
Описание слайда:
Теория Гинзбурга — Ландау Теория Гинзбурга — Ландау — созданная в начале 1950-х годов В. Л. Гинзбургом и Л. Д. Ландау феноменологическая теория сверхпроводимости. Теория построена исходя из следующего вида лагранжиана:

Слайд 14





Квантово-механическая теория
Описание слайда:
Квантово-механическая теория

Слайд 15


Сверхпроводимость, слайд №15
Описание слайда:

Слайд 16





Применение сверхпроводимости
Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).
Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2.
Описание слайда:
Применение сверхпроводимости Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота). Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2.

Слайд 17





Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации. Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, основанные не на свойствах сверхпроводимости (первые четыре), а также сверхпроводниковые детекторы. 
Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации. Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, основанные не на свойствах сверхпроводимости (первые четыре), а также сверхпроводниковые детекторы.
Описание слайда:
Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации. Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, основанные не на свойствах сверхпроводимости (первые четыре), а также сверхпроводниковые детекторы. Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации. Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, основанные не на свойствах сверхпроводимости (первые четыре), а также сверхпроводниковые детекторы.

Слайд 18





Призентацию выполнил             Сухарев Иван
Описание слайда:
Призентацию выполнил Сухарев Иван



Похожие презентации
Mypresentation.ru
Загрузить презентацию