🗊Презентация Basics of factor models

Нажмите для полного просмотра!
Basics of factor models, слайд №1Basics of factor models, слайд №2Basics of factor models, слайд №3Basics of factor models, слайд №4Basics of factor models, слайд №5Basics of factor models, слайд №6Basics of factor models, слайд №7Basics of factor models, слайд №8Basics of factor models, слайд №9Basics of factor models, слайд №10Basics of factor models, слайд №11Basics of factor models, слайд №12Basics of factor models, слайд №13Basics of factor models, слайд №14Basics of factor models, слайд №15Basics of factor models, слайд №16Basics of factor models, слайд №17Basics of factor models, слайд №18Basics of factor models, слайд №19Basics of factor models, слайд №20Basics of factor models, слайд №21Basics of factor models, слайд №22Basics of factor models, слайд №23Basics of factor models, слайд №24Basics of factor models, слайд №25Basics of factor models, слайд №26Basics of factor models, слайд №27Basics of factor models, слайд №28Basics of factor models, слайд №29Basics of factor models, слайд №30Basics of factor models, слайд №31Basics of factor models, слайд №32Basics of factor models, слайд №33Basics of factor models, слайд №34Basics of factor models, слайд №35Basics of factor models, слайд №36Basics of factor models, слайд №37Basics of factor models, слайд №38Basics of factor models, слайд №39Basics of factor models, слайд №40Basics of factor models, слайд №41Basics of factor models, слайд №42Basics of factor models, слайд №43Basics of factor models, слайд №44Basics of factor models, слайд №45Basics of factor models, слайд №46Basics of factor models, слайд №47Basics of factor models, слайд №48Basics of factor models, слайд №49Basics of factor models, слайд №50Basics of factor models, слайд №51Basics of factor models, слайд №52Basics of factor models, слайд №53Basics of factor models, слайд №54Basics of factor models, слайд №55Basics of factor models, слайд №56Basics of factor models, слайд №57Basics of factor models, слайд №58Basics of factor models, слайд №59Basics of factor models, слайд №60Basics of factor models, слайд №61Basics of factor models, слайд №62Basics of factor models, слайд №63Basics of factor models, слайд №64Basics of factor models, слайд №65Basics of factor models, слайд №66Basics of factor models, слайд №67

Содержание

Вы можете ознакомиться и скачать презентацию на тему Basics of factor models. Доклад-сообщение содержит 67 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Basics of factor models, слайд №1
Описание слайда:

Слайд 2





Why factor models?
Описание слайда:
Why factor models?

Слайд 3





Why factor models?
Описание слайда:
Why factor models?

Слайд 4





What can be done  with factor models?
Описание слайда:
What can be done with factor models?

Слайд 5





An introduction to factor models
Описание слайда:
An introduction to factor models

Слайд 6





Some extensions
Описание слайда:
Some extensions

Слайд 7





Representation
Описание слайда:
Representation

Слайд 8





Representation
Описание слайда:
Representation

Слайд 9


Basics of factor models, слайд №9
Описание слайда:

Слайд 10


Basics of factor models, слайд №10
Описание слайда:

Слайд 11


Basics of factor models, слайд №11
Описание слайда:

Слайд 12


Basics of factor models, слайд №12
Описание слайда:

Слайд 13





Identification
Описание слайда:
Identification

Слайд 14


Basics of factor models, слайд №14
Описание слайда:

Слайд 15


Basics of factor models, слайд №15
Описание слайда:

Слайд 16





Factor models and  VARs
Описание слайда:
Factor models and VARs

Слайд 17


Basics of factor models, слайд №17
Описание слайда:

Слайд 18





Estimation by the Kalman  filter
Описание слайда:
Estimation by the Kalman filter

Слайд 19


Basics of factor models, слайд №19
Описание слайда:

Слайд 20


Basics of factor models, слайд №20
Описание слайда:

Слайд 21





Non-parametric, large N, factor  models
Описание слайда:
Non-parametric, large N, factor models

Слайд 22





The SW approach - PCA
The Stock and  Watson (2002a,2002b) factor model  is
Xt = Λft ‡ ξt ,
where:
Xt  is N × 1 vector of stationary variables
ft is r × 1 vector of common factors, can be correlated over  time
Λ is N × r matrix of loadings
ξt is N × 1 vector of idiosyncratic disturbances, can be mildly  cross-sectionally and temporally  correlated
conditions on  Λ and ξt  guarantee that the factors are  pervasive
(affect most variables) while idiosyncratic errors are    not.
Описание слайда:
The SW approach - PCA The Stock and Watson (2002a,2002b) factor model is Xt = Λft ‡ ξt , where: Xt is N × 1 vector of stationary variables ft is r × 1 vector of common factors, can be correlated over time Λ is N × r matrix of loadings ξt is N × 1 vector of idiosyncratic disturbances, can be mildly cross-sectionally and temporally correlated conditions on Λ and ξt guarantee that the factors are pervasive (affect most variables) while idiosyncratic errors are not.

Слайд 23





The SW approach - PCA
Описание слайда:
The SW approach - PCA

Слайд 24





The SW approach - Choice of  r
Описание слайда:
The SW approach - Choice of r

Слайд 25





The SW approach - Properties of  PCA
Описание слайда:
The SW approach - Properties of PCA

Слайд 26





The SW approach - Properties of  PCA
Описание слайда:
The SW approach - Properties of PCA

Слайд 27





The SW approach - Properties of PCA based    forecasts
Описание слайда:
The SW approach - Properties of PCA based forecasts

Слайд 28





The FHLR approach - DPCA
Описание слайда:
The FHLR approach - DPCA

Слайд 29





The FHLR approach - static and dynamic   factors
Описание слайда:
The FHLR approach - static and dynamic factors

Слайд 30





The FHLR approach - Choice of  q
Описание слайда:
The FHLR approach - Choice of q

Слайд 31





The FHLR approach - Forecasting
Описание слайда:
The FHLR approach - Forecasting

Слайд 32





Parametric estimation - quasi  MLE
Описание слайда:
Parametric estimation - quasi MLE

Слайд 33





Parametric estimation - quasi  MLE
Описание слайда:
Parametric estimation - quasi MLE

Слайд 34





Parametric estimation - Subspace  algorithms (SSS)
Описание слайда:
Parametric estimation - Subspace algorithms (SSS)

Слайд 35





Parametric estimation - SSS
Описание слайда:
Parametric estimation - SSS

Слайд 36





Parametric estimation - SSS  forecasts
Описание слайда:
Parametric estimation - SSS forecasts

Слайд 37





Factor estimation methods - Monte Carlo  Comparison
Описание слайда:
Factor estimation methods - Monte Carlo Comparison

Слайд 38





Factor estimation methods - MC Comparison,  summary
Описание слайда:
Factor estimation methods - MC Comparison, summary

Слайд 39





Factor models - Forecasting  performance
Really many papers on forecasting with factor models in the  past l5 years, starting with Stock and Watson (2002b) for the  USA and Marcellino, Stock and Watson (2003) for the euro  area. Banerjee, Marcellino and Masten (2006) provide results  for ten Eastern European countries. Eickmeier and Ziegler  (2008) provide nice summary (meta-analysis), see also Stock  and  Watson (2006) for a  survey  of the earlier results.
Recently used also for nowcasting, i.e., predicting current  economic conditions (before official data is released). More on  this in the next  lecture.
Описание слайда:
Factor models - Forecasting performance Really many papers on forecasting with factor models in the past l5 years, starting with Stock and Watson (2002b) for the USA and Marcellino, Stock and Watson (2003) for the euro area. Banerjee, Marcellino and Masten (2006) provide results for ten Eastern European countries. Eickmeier and Ziegler (2008) provide nice summary (meta-analysis), see also Stock and Watson (2006) for a survey of the earlier results. Recently used also for nowcasting, i.e., predicting current economic conditions (before official data is released). More on this in the next lecture.

Слайд 40





Factor models - Forecasting  performance
Описание слайда:
Factor models - Forecasting performance

Слайд 41





Structural Factor Augmented VAR  (FAVAR)
Описание слайда:
Structural Factor Augmented VAR (FAVAR)

Слайд 42





Structural FAVAR
Описание слайда:
Structural FAVAR

Слайд 43





Structural FAVAR  - Monetary policy shock  identification
Описание слайда:
Structural FAVAR - Monetary policy shock identification

Слайд 44





Structural FAVAR  - Monetary policy shock  identification
Описание слайда:
Structural FAVAR - Monetary policy shock identification

Слайд 45





Structural FAVAR  - Monetary policy shock  identification
Описание слайда:
Structural FAVAR - Monetary policy shock identification

Слайд 46





Structural FAVAR  - Monetary policy (FFR) shock
Описание слайда:
Structural FAVAR - Monetary policy (FFR) shock

Слайд 47





Structural FAVAR  - Monetary policy (FFR) shock
Описание слайда:
Structural FAVAR - Monetary policy (FFR) shock

Слайд 48





Structural FAVAR  - Monetary policy (FFR) shock
Описание слайда:
Structural FAVAR - Monetary policy (FFR) shock

Слайд 49





Structural FAVAR: Summary
Описание слайда:
Structural FAVAR: Summary

Слайд 50





References
Описание слайда:
References

Слайд 51


Basics of factor models, слайд №51
Описание слайда:

Слайд 52


Basics of factor models, слайд №52
Описание слайда:

Слайд 53


Basics of factor models, слайд №53
Описание слайда:

Слайд 54


Basics of factor models, слайд №54
Описание слайда:

Слайд 55


Basics of factor models, слайд №55
Описание слайда:

Слайд 56





      Stock, J.H. and Watson, M. W. (20l5), “Factor Models for  Macroeconomics," in J. B. Taylor and H. Uhlig (eds),  Handbook of Macroeconomics, Vol. 2, North   Holland.
Описание слайда:
Stock, J.H. and Watson, M. W. (20l5), “Factor Models for Macroeconomics," in J. B. Taylor and H. Uhlig (eds), Handbook of Macroeconomics, Vol. 2, North Holland.

Слайд 57





The FHLR approach - DPCA
Описание слайда:
The FHLR approach - DPCA

Слайд 58





The FHLR approach - DPCA
Описание слайда:
The FHLR approach - DPCA

Слайд 59





Parametric estimation - Subspace  algorithms (SSS)
Описание слайда:
Parametric estimation - Subspace algorithms (SSS)

Слайд 60





Parametric estimation - SSS,  T asymptotics
Описание слайда:
Parametric estimation - SSS, T asymptotics

Слайд 61





Parametric estimation - SSS,  T and N asymptotics
Описание слайда:
Parametric estimation - SSS, T and N asymptotics

Слайд 62





Factor estimation methods - MC  Comparison
First set of experiments: a single VARMA factor with di"erent  specifications:
1a1 =0.2, b1 = 0.4¡  2  a1 =0.7, bl =0.2¡
3  a1 =0.3, a2  = 0.1, b1 = 0.15, b2  = 0.15¡
4  a1 = 0.5, a2  = 0.3, b1 = 0.2, b2  = 0.2¡
5  a1 = 0.2, b1 = —0.4¡
6  a1 = 0.7, b1 = —0.2¡
7  a1 = 0.3, a2  = 0.1, b1 = —0.15, b2  = —0.15¡
8  a1 = 0.5, a2  = 0.3, b1 = —0.2, b2  = —0.2.
9  As 1but C  = C0  + C1L.
 10 As 1but one  factor assumed  instead of   p + q
Описание слайда:
Factor estimation methods - MC Comparison First set of experiments: a single VARMA factor with di"erent specifications: 1a1 =0.2, b1 = 0.4¡ 2 a1 =0.7, bl =0.2¡ 3 a1 =0.3, a2 = 0.1, b1 = 0.15, b2 = 0.15¡ 4 a1 = 0.5, a2 = 0.3, b1 = 0.2, b2 = 0.2¡ 5 a1 = 0.2, b1 = —0.4¡ 6 a1 = 0.7, b1 = —0.2¡ 7 a1 = 0.3, a2 = 0.1, b1 = —0.15, b2 = —0.15¡ 8 a1 = 0.5, a2 = 0.3, b1 = —0.2, b2 = —0.2. 9 As 1but C = C0 + C1L. 10 As 1but one factor assumed instead of p + q

Слайд 63





Factor estimation methods - MC  Comparison
Second group of experiments: as in 1-10 but with each  idiosyncratic error being an AR(1) process with coefficient 0.2  (exp. 11-20). Experiments with cross correlation yield similar  ranking of methods.
Third group of experiments: 3 dimensional VAR(1) for the  factors with diagonal matrix with elements equal to 0.5 (exp.  21).
Fourth group of experiments: as 1-21 but the C matrix is  U(0,1) rather than N(0,1).
Fifth group of experiments: as  1-21 but using s  = 1instead  of s  = m.
Описание слайда:
Factor estimation methods - MC Comparison Second group of experiments: as in 1-10 but with each idiosyncratic error being an AR(1) process with coefficient 0.2 (exp. 11-20). Experiments with cross correlation yield similar ranking of methods. Third group of experiments: 3 dimensional VAR(1) for the factors with diagonal matrix with elements equal to 0.5 (exp. 21). Fourth group of experiments: as 1-21 but the C matrix is U(0,1) rather than N(0,1). Fifth group of experiments: as 1-21 but using s = 1instead of s = m.

Слайд 64





Factor estimation methods - MC  Comparison
Описание слайда:
Factor estimation methods - MC Comparison

Слайд 65





Factor estimation methods - MC Comparison,  N=T=50
Single ARMA factor (exp. 1-8): looking at correlations, SSS  clearly outperforms PCA and DPCA. Gains wrt PCA rather  limited, 5-10%, but systematic. Larger gains wrt DPCA,  about 20%. Little evidence of correlation of idiosyncratic  component , but rejection probabilities of LM(4) test  systematically larger for DPCA.
Serially correlated idiosyncratic errors (exp. 11-18): no major  changes. Low rejection rate of LM(4) test due to low power  for T = 50.
Dynamic effect of factor (exp. 9 and l9): serious deterioration  of SSS, a drop of about 25% in the correlation values. DPCA  improves but it is still beaten by PCA. Choice of s matters:  
    for s  =1SSS  becomes  comparable with PCA (Table 9).
Описание слайда:
Factor estimation methods - MC Comparison, N=T=50 Single ARMA factor (exp. 1-8): looking at correlations, SSS clearly outperforms PCA and DPCA. Gains wrt PCA rather limited, 5-10%, but systematic. Larger gains wrt DPCA, about 20%. Little evidence of correlation of idiosyncratic component , but rejection probabilities of LM(4) test systematically larger for DPCA. Serially correlated idiosyncratic errors (exp. 11-18): no major changes. Low rejection rate of LM(4) test due to low power for T = 50. Dynamic effect of factor (exp. 9 and l9): serious deterioration of SSS, a drop of about 25% in the correlation values. DPCA improves but it is still beaten by PCA. Choice of s matters: for s =1SSS becomes comparable with PCA (Table 9).

Слайд 66





Factor estimation methods - MC Comparison,  N=T=50
Описание слайда:
Factor estimation methods - MC Comparison, N=T=50

Слайд 67





Factor estimation methods - MC Comparison, other  results
Описание слайда:
Factor estimation methods - MC Comparison, other results



Теги Basics of factor models
Похожие презентации
Mypresentation.ru
Загрузить презентацию