🗊Презентация Business statistics

Нажмите для полного просмотра!
Business statistics, слайд №1Business statistics, слайд №2Business statistics, слайд №3Business statistics, слайд №4Business statistics, слайд №5Business statistics, слайд №6Business statistics, слайд №7Business statistics, слайд №8Business statistics, слайд №9Business statistics, слайд №10Business statistics, слайд №11Business statistics, слайд №12Business statistics, слайд №13Business statistics, слайд №14Business statistics, слайд №15Business statistics, слайд №16Business statistics, слайд №17Business statistics, слайд №18Business statistics, слайд №19Business statistics, слайд №20Business statistics, слайд №21Business statistics, слайд №22Business statistics, слайд №23Business statistics, слайд №24Business statistics, слайд №25Business statistics, слайд №26Business statistics, слайд №27Business statistics, слайд №28Business statistics, слайд №29Business statistics, слайд №30Business statistics, слайд №31Business statistics, слайд №32Business statistics, слайд №33Business statistics, слайд №34Business statistics, слайд №35Business statistics, слайд №36Business statistics, слайд №37Business statistics, слайд №38Business statistics, слайд №39Business statistics, слайд №40Business statistics, слайд №41Business statistics, слайд №42Business statistics, слайд №43Business statistics, слайд №44Business statistics, слайд №45Business statistics, слайд №46Business statistics, слайд №47Business statistics, слайд №48Business statistics, слайд №49Business statistics, слайд №50Business statistics, слайд №51Business statistics, слайд №52Business statistics, слайд №53Business statistics, слайд №54Business statistics, слайд №55Business statistics, слайд №56Business statistics, слайд №57Business statistics, слайд №58Business statistics, слайд №59Business statistics, слайд №60Business statistics, слайд №61Business statistics, слайд №62Business statistics, слайд №63Business statistics, слайд №64Business statistics, слайд №65Business statistics, слайд №66Business statistics, слайд №67Business statistics, слайд №68Business statistics, слайд №69Business statistics, слайд №70Business statistics, слайд №71Business statistics, слайд №72Business statistics, слайд №73Business statistics, слайд №74Business statistics, слайд №75Business statistics, слайд №76Business statistics, слайд №77Business statistics, слайд №78Business statistics, слайд №79Business statistics, слайд №80Business statistics, слайд №81Business statistics, слайд №82Business statistics, слайд №83Business statistics, слайд №84Business statistics, слайд №85Business statistics, слайд №86Business statistics, слайд №87Business statistics, слайд №88Business statistics, слайд №89Business statistics, слайд №90Business statistics, слайд №91

Содержание

Вы можете ознакомиться и скачать презентацию на тему Business statistics. Доклад-сообщение содержит 91 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





BUSINESS STATISTICS
KOLESNIKOVA IRINA IVANOVNA

DEPARTMENT OF STATISTICS
2nd building, 217 room
(017) 209-88-51
KLSNK_A@TUT.BY
Описание слайда:
BUSINESS STATISTICS KOLESNIKOVA IRINA IVANOVNA DEPARTMENT OF STATISTICS 2nd building, 217 room (017) 209-88-51 KLSNK_A@TUT.BY

Слайд 2





LITERATURE
1. Siegel, Andrew F. Practical Business Statistics. Sixth edition. Amsterdam: Academic Press. – 2015. - 619 p.
2. Andersen, T.G. Davis, R.A., Kreib, J.P., Mikosch, T. Handbook of  Financial Time Series // Andersen T. et al. (Eds.). Springer, 2009. – 1024 p.
3. Box, G.E.P., Jenkins, J.M., Reinsel, G.C. Time Series Analysis: Forecasting and Control. – 4th ed. Wiley, 2008. – 756 p. 
4. Krehbiel, Timothy C,  Levin, David M, Berenson, Mark  L, Basic Business Statistics. Concept and applications.  12th Edition, Prentice Hall, 2011. - 890p.
5. Lind, D. A., Marchal, W. G., Wathen, S. A.. Basic Statistics for Business & Economics. 8 edition. McGraw-Hill Higher Education – 2013.
Описание слайда:
LITERATURE 1. Siegel, Andrew F. Practical Business Statistics. Sixth edition. Amsterdam: Academic Press. – 2015. - 619 p. 2. Andersen, T.G. Davis, R.A., Kreib, J.P., Mikosch, T. Handbook of Financial Time Series // Andersen T. et al. (Eds.). Springer, 2009. – 1024 p. 3. Box, G.E.P., Jenkins, J.M., Reinsel, G.C. Time Series Analysis: Forecasting and Control. – 4th ed. Wiley, 2008. – 756 p. 4. Krehbiel, Timothy C, Levin, David M, Berenson, Mark L, Basic Business Statistics. Concept and applications. 12th Edition, Prentice Hall, 2011. - 890p. 5. Lind, D. A., Marchal, W. G., Wathen, S. A.. Basic Statistics for Business & Economics. 8 edition. McGraw-Hill Higher Education – 2013.

Слайд 3





6.Сигел, Э. Практическая бизнес-статистика: Пер. с англ. / Э.Сигел. – М.: Издательский дом «Вильямс», 2002. - 1056 с. 
6.Сигел, Э. Практическая бизнес-статистика: Пер. с англ. / Э.Сигел. – М.: Издательский дом «Вильямс», 2002. - 1056 с. 
7.Колесникова, И.И. Статистика. Практикум: учеб. пособие. / И.И. Колесникова, Г.В. Круглякова. – Минск.: Вышэйшая школа, 2011. – 285с.
8.Образцова, О.И. Статистика предприятий и бизнес-статистика: учеб. пособие / О.И. Образцова. - М.: Изд. дом Высшей школы экономики, 2011. – 704 с.
Описание слайда:
6.Сигел, Э. Практическая бизнес-статистика: Пер. с англ. / Э.Сигел. – М.: Издательский дом «Вильямс», 2002. - 1056 с. 6.Сигел, Э. Практическая бизнес-статистика: Пер. с англ. / Э.Сигел. – М.: Издательский дом «Вильямс», 2002. - 1056 с. 7.Колесникова, И.И. Статистика. Практикум: учеб. пособие. / И.И. Колесникова, Г.В. Круглякова. – Минск.: Вышэйшая школа, 2011. – 285с. 8.Образцова, О.И. Статистика предприятий и бизнес-статистика: учеб. пособие / О.И. Образцова. - М.: Изд. дом Высшей школы экономики, 2011. – 704 с.

Слайд 4





Business Statistics
What and Why
Описание слайда:
Business Statistics What and Why

Слайд 5





Welcome to the world of statistics. This is a world you will want to get comfortable with because you will make better management decisions when you know how to assess the available information and how to ask for additional facts as needed. How else can you expect to manage 12 divisions, 683 products, and 5809 employees? 
Welcome to the world of statistics. This is a world you will want to get comfortable with because you will make better management decisions when you know how to assess the available information and how to ask for additional facts as needed. How else can you expect to manage 12 divisions, 683 products, and 5809 employees? 
And even for small business, you will need to understand the larger business environmental of potential customers and competitors it operates within.
Описание слайда:
Welcome to the world of statistics. This is a world you will want to get comfortable with because you will make better management decisions when you know how to assess the available information and how to ask for additional facts as needed. How else can you expect to manage 12 divisions, 683 products, and 5809 employees? Welcome to the world of statistics. This is a world you will want to get comfortable with because you will make better management decisions when you know how to assess the available information and how to ask for additional facts as needed. How else can you expect to manage 12 divisions, 683 products, and 5809 employees? And even for small business, you will need to understand the larger business environmental of potential customers and competitors it operates within.

Слайд 6





The early chapters will introduce you to the role of statistics and data mining in business management to the various types of data sets. Next chapter will show you a good way to see the basic facts about a list of numbers – by looking at a histogram. Fundamental summary numbers (such as average, median, percentiles, etc. ) will be explained in the next chapter. One reason statistical methods are so important is that there is so much variability out there that gets in the way of message in the data.
The early chapters will introduce you to the role of statistics and data mining in business management to the various types of data sets. Next chapter will show you a good way to see the basic facts about a list of numbers – by looking at a histogram. Fundamental summary numbers (such as average, median, percentiles, etc. ) will be explained in the next chapter. One reason statistical methods are so important is that there is so much variability out there that gets in the way of message in the data.
Описание слайда:
The early chapters will introduce you to the role of statistics and data mining in business management to the various types of data sets. Next chapter will show you a good way to see the basic facts about a list of numbers – by looking at a histogram. Fundamental summary numbers (such as average, median, percentiles, etc. ) will be explained in the next chapter. One reason statistical methods are so important is that there is so much variability out there that gets in the way of message in the data. The early chapters will introduce you to the role of statistics and data mining in business management to the various types of data sets. Next chapter will show you a good way to see the basic facts about a list of numbers – by looking at a histogram. Fundamental summary numbers (such as average, median, percentiles, etc. ) will be explained in the next chapter. One reason statistical methods are so important is that there is so much variability out there that gets in the way of message in the data.

Слайд 7





Is knowledge of statistics really necessary to be successful in business? Or is it enough to rely on intuition, experience, and hunches? Let’s put in another way: Do you really want to ignore much of the vast potentially useful information out there that comes in the form of data?
Is knowledge of statistics really necessary to be successful in business? Or is it enough to rely on intuition, experience, and hunches? Let’s put in another way: Do you really want to ignore much of the vast potentially useful information out there that comes in the form of data?
Описание слайда:
Is knowledge of statistics really necessary to be successful in business? Or is it enough to rely on intuition, experience, and hunches? Let’s put in another way: Do you really want to ignore much of the vast potentially useful information out there that comes in the form of data? Is knowledge of statistics really necessary to be successful in business? Or is it enough to rely on intuition, experience, and hunches? Let’s put in another way: Do you really want to ignore much of the vast potentially useful information out there that comes in the form of data?

Слайд 8





Is statistics difficult?
Is statistics difficult?
Statistics is no more difficult than any other  field of study. Naturally, some hard work is needed to achieve understanding of the general ideas and concepts. Although  some attention to details and computation is necessary, it is much easier to become an expert user of statistics than it is to become an expert statistician trained in all of the fine details. Statistics is easier than it used to be now that personal computers can do the repetitive number-crunching tasks, allowing you to concentrate on interpreting the results and their meaning.
Описание слайда:
Is statistics difficult? Is statistics difficult? Statistics is no more difficult than any other field of study. Naturally, some hard work is needed to achieve understanding of the general ideas and concepts. Although some attention to details and computation is necessary, it is much easier to become an expert user of statistics than it is to become an expert statistician trained in all of the fine details. Statistics is easier than it used to be now that personal computers can do the repetitive number-crunching tasks, allowing you to concentrate on interpreting the results and their meaning.

Слайд 9






Although a few die-hard purists may bemoan the decline of technical detail in statistics teaching, it is good to see that these details are now in their proper place; life is too short for all human being to work out the intricate details of techniques such as long division and matrix inversion.
Описание слайда:
Although a few die-hard purists may bemoan the decline of technical detail in statistics teaching, it is good to see that these details are now in their proper place; life is too short for all human being to work out the intricate details of techniques such as long division and matrix inversion.

Слайд 10





Does learning statistics decrease your decision-making flexibility?
Does learning statistics decrease your decision-making flexibility?
 Knowledge of decisions enhances your ability to make good decisions. Statistics is not a rigid, exact  science  and should not get in the way of your experience  and intuition. By learning about data and the basic properties of uncertain events, you will help solidify the information on which your decisions are based, and you will add a new dimension to your intuition.
Описание слайда:
Does learning statistics decrease your decision-making flexibility? Does learning statistics decrease your decision-making flexibility? Knowledge of decisions enhances your ability to make good decisions. Statistics is not a rigid, exact science and should not get in the way of your experience and intuition. By learning about data and the basic properties of uncertain events, you will help solidify the information on which your decisions are based, and you will add a new dimension to your intuition.

Слайд 11






Think of  statistical methods as a component of decision making, but not the whole story. You want to supplement – not replace – business experience, common sense, and intuition.
Описание слайда:
Think of statistical methods as a component of decision making, but not the whole story. You want to supplement – not replace – business experience, common sense, and intuition.

Слайд 12





Introduction into Business Statistics
Описание слайда:
Introduction into Business Statistics

Слайд 13





СHAPTER QUESTIONS
Definition of the term ‘statistics’. 
Statistical Methods
Functions of Statistics
Key Terms: Data, Population, Parameter, Sample, Variables (Independent and Dependent). Types Of Variables 
Descriptive аnd Inferential statistics
Data Sources
Worthiness Evaluating Survey
Описание слайда:
СHAPTER QUESTIONS Definition of the term ‘statistics’. Statistical Methods Functions of Statistics Key Terms: Data, Population, Parameter, Sample, Variables (Independent and Dependent). Types Of Variables Descriptive аnd Inferential statistics Data Sources Worthiness Evaluating Survey

Слайд 14





Chapter Goals
After completing this chapter, you should be able to: 
Explain how decisions are often based on incomplete information 
Explain key definitions:
 Population vs. Sample	 
 Parameter vs. Statistic
 Descriptive vs. Inferential Statistics
Describe random sampling
Explain the difference between Descriptive and Inferential statistics
Описание слайда:
Chapter Goals After completing this chapter, you should be able to: Explain how decisions are often based on incomplete information Explain key definitions:  Population vs. Sample  Parameter vs. Statistic  Descriptive vs. Inferential Statistics Describe random sampling Explain the difference between Descriptive and Inferential statistics

Слайд 15





Introduction
The word “statistics” is very popularly used in practice. It conveys a variety of meanings to people, many of which are inaccurate or, at the very least, misleading. 
The average persons conceive of “statistics” as column of figures, zigzag graphs or tables like statistics of production, consumption, per capita income, imports, exports, crimes, divorce, share prices, etc.
Описание слайда:
Introduction The word “statistics” is very popularly used in practice. It conveys a variety of meanings to people, many of which are inaccurate or, at the very least, misleading. The average persons conceive of “statistics” as column of figures, zigzag graphs or tables like statistics of production, consumption, per capita income, imports, exports, crimes, divorce, share prices, etc.

Слайд 16






Such statistics are quite commonly found in newspapers, journals, reports and one can hear them on radio, television, classroom lectures and so on.
For example, one may find statements like “the production of food grains is expected to decrease from 192.3 m tones in 1997-98 to 183.2 m tones in 2002-03.
Описание слайда:
Such statistics are quite commonly found in newspapers, journals, reports and one can hear them on radio, television, classroom lectures and so on. For example, one may find statements like “the production of food grains is expected to decrease from 192.3 m tones in 1997-98 to 183.2 m tones in 2002-03.

Слайд 17






In addition to meaning numerical facts, “statistics” also refers to a subject, just as ‘mathematics’ as well as symbols, formulae and theorems.
Thus, the word ‘statistics’ refers either to quantitative information or to a method of dealing with quantitative information.
Описание слайда:
In addition to meaning numerical facts, “statistics” also refers to a subject, just as ‘mathematics’ as well as symbols, formulae and theorems. Thus, the word ‘statistics’ refers either to quantitative information or to a method of dealing with quantitative information.

Слайд 18





What is statistics?
Statistics is the art and science of collecting and understanding data. Since data refers to any kind of recorded information, statistics plays an important role in many human endeavors.
Описание слайда:
What is statistics? Statistics is the art and science of collecting and understanding data. Since data refers to any kind of recorded information, statistics plays an important role in many human endeavors.

Слайд 19





Definition
There have been many definitions of the term ‘statistics’- indeed scholarly articles have carefully collected together hundreds of definitions, some have defined statistics as statistical data whereas others as statistical methods. 
Croxton and Cowden – “Statistics may be defined as a science of collection, presentation, analysis and interpretation of numerical data.”
Описание слайда:
Definition There have been many definitions of the term ‘statistics’- indeed scholarly articles have carefully collected together hundreds of definitions, some have defined statistics as statistical data whereas others as statistical methods. Croxton and Cowden – “Statistics may be defined as a science of collection, presentation, analysis and interpretation of numerical data.”

Слайд 20





Statistics Looks at the Big Picture
Statistics Looks at the Big Picture
When you have a large, complex assemblage of many small pieces of information, statistics can help you classify and analyze the situation, providing a useful overview and summary of the fundamental features in the data. If you don’t yet have the data, then statistics can help you collect them, ensuring that your questions can be answered and that you spend enough (but not too much) effort in the process.
Описание слайда:
Statistics Looks at the Big Picture Statistics Looks at the Big Picture When you have a large, complex assemblage of many small pieces of information, statistics can help you classify and analyze the situation, providing a useful overview and summary of the fundamental features in the data. If you don’t yet have the data, then statistics can help you collect them, ensuring that your questions can be answered and that you spend enough (but not too much) effort in the process.

Слайд 21





Statistics in Management
What should a manager know about statistics? Your knowledge should include a broad  overview of the basic concepts of statistics, with some details. You should be aware that the world is random and uncertain in many aspects. You should be able to effectively perform two important activities:
1. Understand and use the results of statistical analysis as background information in your work.
2. Play the appropriate leadership role during the course of a statistical study if you are responsible for the actual data collection and/or analysis.
Описание слайда:
Statistics in Management What should a manager know about statistics? Your knowledge should include a broad overview of the basic concepts of statistics, with some details. You should be aware that the world is random and uncertain in many aspects. You should be able to effectively perform two important activities: 1. Understand and use the results of statistical analysis as background information in your work. 2. Play the appropriate leadership role during the course of a statistical study if you are responsible for the actual data collection and/or analysis.

Слайд 22





To fulfill these roles, you do not need to be able to perform a complex statistical analysis by yourself. However, some experience with actual statistical analysis is essential for you to obtain the perspective that leads to effective interpretation.
To fulfill these roles, you do not need to be able to perform a complex statistical analysis by yourself. However, some experience with actual statistical analysis is essential for you to obtain the perspective that leads to effective interpretation.
Experience with actual analysis will also help you to lead other to sound results and to understand what they are going through. Moreover, there may be times when it will be most convenient for you to do some analysis on your own. Thus, we will concentrate on the ideas and concepts of statistics, reinforcing these with practical examples.
Описание слайда:
To fulfill these roles, you do not need to be able to perform a complex statistical analysis by yourself. However, some experience with actual statistical analysis is essential for you to obtain the perspective that leads to effective interpretation. To fulfill these roles, you do not need to be able to perform a complex statistical analysis by yourself. However, some experience with actual statistical analysis is essential for you to obtain the perspective that leads to effective interpretation. Experience with actual analysis will also help you to lead other to sound results and to understand what they are going through. Moreover, there may be times when it will be most convenient for you to do some analysis on your own. Thus, we will concentrate on the ideas and concepts of statistics, reinforcing these with practical examples.

Слайд 23





The five basic activities of statistics
In the beginning stages of a statistical study, either there are not yet any data or else it has not yet been decided what data to look closely at. 
The design phase will resolve these issues so that useful data will result.
Once data are available, an initial inspection is called for, provided by the exploratory phase.
Описание слайда:
The five basic activities of statistics In the beginning stages of a statistical study, either there are not yet any data or else it has not yet been decided what data to look closely at. The design phase will resolve these issues so that useful data will result. Once data are available, an initial inspection is called for, provided by the exploratory phase.

Слайд 24





In the modeling phase, a system of assumptions and equations is selected in order to provide a framework for further analysis.
In the modeling phase, a system of assumptions and equations is selected in order to provide a framework for further analysis.
A numerical summary of an unknown quantity, based on data, is the result of the estimation process. 
The last of these basic activities is hypothesis testing, which uses the data to help you decide what the world is really like in some respect. 
We will now consider these five activities in turn.
Описание слайда:
In the modeling phase, a system of assumptions and equations is selected in order to provide a framework for further analysis. In the modeling phase, a system of assumptions and equations is selected in order to provide a framework for further analysis. A numerical summary of an unknown quantity, based on data, is the result of the estimation process. The last of these basic activities is hypothesis testing, which uses the data to help you decide what the world is really like in some respect. We will now consider these five activities in turn.

Слайд 25


Business statistics, слайд №25
Описание слайда:

Слайд 26





Designing a Plan for Data Collection -
   might be called sample survey design for a marketing study or experimental design for a chemical manufacturing process optimization study. This phase of designing the study involves planning the details of data gathering. A careful design can avoid the cost and disappointment of finding out – too late – that the data collected are not adequate to answer the important questions. A good design will also collect just the right amount the data: enough to be useful, but not so much as to be wasteful. Thus, by planning ahead, you can help ensure that the analysis phase will go smoothly and hold down the cost of the project.
Описание слайда:
Designing a Plan for Data Collection - might be called sample survey design for a marketing study or experimental design for a chemical manufacturing process optimization study. This phase of designing the study involves planning the details of data gathering. A careful design can avoid the cost and disappointment of finding out – too late – that the data collected are not adequate to answer the important questions. A good design will also collect just the right amount the data: enough to be useful, but not so much as to be wasteful. Thus, by planning ahead, you can help ensure that the analysis phase will go smoothly and hold down the cost of the project.

Слайд 27





Statistics is particularly useful when you have a large group of people, firms, or other items (the population) that you would like to know about but can’t reasonable afford to investigate completely. Instead, to achieve a useful but imperfect understanding of this population, you select a smaller group (the sample) consisting of some – but not all – of the items in the population. The process of generalizing from the observed sample to the larger population is known as statistical inference. 
Statistics is particularly useful when you have a large group of people, firms, or other items (the population) that you would like to know about but can’t reasonable afford to investigate completely. Instead, to achieve a useful but imperfect understanding of this population, you select a smaller group (the sample) consisting of some – but not all – of the items in the population. The process of generalizing from the observed sample to the larger population is known as statistical inference.
Описание слайда:
Statistics is particularly useful when you have a large group of people, firms, or other items (the population) that you would like to know about but can’t reasonable afford to investigate completely. Instead, to achieve a useful but imperfect understanding of this population, you select a smaller group (the sample) consisting of some – but not all – of the items in the population. The process of generalizing from the observed sample to the larger population is known as statistical inference. Statistics is particularly useful when you have a large group of people, firms, or other items (the population) that you would like to know about but can’t reasonable afford to investigate completely. Instead, to achieve a useful but imperfect understanding of this population, you select a smaller group (the sample) consisting of some – but not all – of the items in the population. The process of generalizing from the observed sample to the larger population is known as statistical inference.

Слайд 28





 
The random sample is one of the best ways to select a practical sample, to be studied in detail, from a population that is too large to be examined in its entirety. By selecting randomly, you accomplish two goals:
Описание слайда:
The random sample is one of the best ways to select a practical sample, to be studied in detail, from a population that is too large to be examined in its entirety. By selecting randomly, you accomplish two goals:

Слайд 29





1. You are guaranteed that the selection process is fair and proceeds without bias; that is, all items have an equal chance of being selected. This assures you that, on average, samples will be representative of the population (although each particular random sample is usually only approximately, and not perfectly, representative).
1. You are guaranteed that the selection process is fair and proceeds without bias; that is, all items have an equal chance of being selected. This assures you that, on average, samples will be representative of the population (although each particular random sample is usually only approximately, and not perfectly, representative).
2. The randomness, introduced in a controlled way during the design phase of the project, will help ensure validity of the statistical inferences drawn later.
Описание слайда:
1. You are guaranteed that the selection process is fair and proceeds without bias; that is, all items have an equal chance of being selected. This assures you that, on average, samples will be representative of the population (although each particular random sample is usually only approximately, and not perfectly, representative). 1. You are guaranteed that the selection process is fair and proceeds without bias; that is, all items have an equal chance of being selected. This assures you that, on average, samples will be representative of the population (although each particular random sample is usually only approximately, and not perfectly, representative). 2. The randomness, introduced in a controlled way during the design phase of the project, will help ensure validity of the statistical inferences drawn later.

Слайд 30





Exploring the Data
As soon as  you have a set of data, you will want to check it out. Exploring the data involves looking at your data set from many angles, describing it, and summarizing it. In this way you will be able to make sure that the data are really what they are claimed to be and that there are no obvious problems. But good exploration also prepares you for the formal analysis in either of two ways:
Описание слайда:
Exploring the Data As soon as you have a set of data, you will want to check it out. Exploring the data involves looking at your data set from many angles, describing it, and summarizing it. In this way you will be able to make sure that the data are really what they are claimed to be and that there are no obvious problems. But good exploration also prepares you for the formal analysis in either of two ways:

Слайд 31





1. By verifying that the expected relationships actually exist in the data, thereby validating the planned techniques of analysis.   
1. By verifying that the expected relationships actually exist in the data, thereby validating the planned techniques of analysis.   
2. By finding some unexpected structure in the data that must be taken into account, thereby suggesting some changes in the planned analysis.
Описание слайда:
1. By verifying that the expected relationships actually exist in the data, thereby validating the planned techniques of analysis. 1. By verifying that the expected relationships actually exist in the data, thereby validating the planned techniques of analysis. 2. By finding some unexpected structure in the data that must be taken into account, thereby suggesting some changes in the planned analysis.

Слайд 32





Exploration is the first phase once you have data to look at. It is often not enough to rely on a formal, automated analysis, which can be only as good as the data that go into the computer and which assumes that the data set is “well behaved”. Whenever possible, examine the data directly to make sure to look OK: That is, there are no large errors, and the relationships observable in the data are appropriate to the kind of analysis to be performed. This phase can help in (1) editing the data for errors, (2) selecting an appropriate analysis, (3) validating the statistical techniques that are to be used in further analysis.
Exploration is the first phase once you have data to look at. It is often not enough to rely on a formal, automated analysis, which can be only as good as the data that go into the computer and which assumes that the data set is “well behaved”. Whenever possible, examine the data directly to make sure to look OK: That is, there are no large errors, and the relationships observable in the data are appropriate to the kind of analysis to be performed. This phase can help in (1) editing the data for errors, (2) selecting an appropriate analysis, (3) validating the statistical techniques that are to be used in further analysis.
Описание слайда:
Exploration is the first phase once you have data to look at. It is often not enough to rely on a formal, automated analysis, which can be only as good as the data that go into the computer and which assumes that the data set is “well behaved”. Whenever possible, examine the data directly to make sure to look OK: That is, there are no large errors, and the relationships observable in the data are appropriate to the kind of analysis to be performed. This phase can help in (1) editing the data for errors, (2) selecting an appropriate analysis, (3) validating the statistical techniques that are to be used in further analysis. Exploration is the first phase once you have data to look at. It is often not enough to rely on a formal, automated analysis, which can be only as good as the data that go into the computer and which assumes that the data set is “well behaved”. Whenever possible, examine the data directly to make sure to look OK: That is, there are no large errors, and the relationships observable in the data are appropriate to the kind of analysis to be performed. This phase can help in (1) editing the data for errors, (2) selecting an appropriate analysis, (3) validating the statistical techniques that are to be used in further analysis.

Слайд 33





Modeling the Data
In statistics, a model is a system of assumption and equations that can generate artificial data similar to the data you are interested in, so that you can work with a few numbers (called parameters) that represent the important aspects of the data. A model can be a very effective system within which questions about large-scale properties of the data can be answered.
Описание слайда:
Modeling the Data In statistics, a model is a system of assumption and equations that can generate artificial data similar to the data you are interested in, so that you can work with a few numbers (called parameters) that represent the important aspects of the data. A model can be a very effective system within which questions about large-scale properties of the data can be answered.

Слайд 34





Here are some models that can be useful in analyzing data. Notice that each model generates data with the general approach “data equals structure plus noise”, specifying the structure in different ways. In selecting a model, it can be very useful to consider what you have learned by exploring the data.
Here are some models that can be useful in analyzing data. Notice that each model generates data with the general approach “data equals structure plus noise”, specifying the structure in different ways. In selecting a model, it can be very useful to consider what you have learned by exploring the data.
Описание слайда:
Here are some models that can be useful in analyzing data. Notice that each model generates data with the general approach “data equals structure plus noise”, specifying the structure in different ways. In selecting a model, it can be very useful to consider what you have learned by exploring the data. Here are some models that can be useful in analyzing data. Notice that each model generates data with the general approach “data equals structure plus noise”, specifying the structure in different ways. In selecting a model, it can be very useful to consider what you have learned by exploring the data.

Слайд 35





1. Consider a simple model that generates artificial data consisting of a single number plus noise. Follows we explore how to extract information about the single number and how to describe the noise. 
1. Consider a simple model that generates artificial data consisting of a single number plus noise. Follows we explore how to extract information about the single number and how to describe the noise. 
2. Consider a model that generates pairs of artificial noisy data values that are related to each other. Next we’ll show some useful models for describing the nature and extent of the relationship and the noise.
3. Consider a model that generates a series of noisy data values where the next one is related to  the previous one.
Описание слайда:
1. Consider a simple model that generates artificial data consisting of a single number plus noise. Follows we explore how to extract information about the single number and how to describe the noise. 1. Consider a simple model that generates artificial data consisting of a single number plus noise. Follows we explore how to extract information about the single number and how to describe the noise. 2. Consider a model that generates pairs of artificial noisy data values that are related to each other. Next we’ll show some useful models for describing the nature and extent of the relationship and the noise. 3. Consider a model that generates a series of noisy data values where the next one is related to the previous one.

Слайд 36





Estimating an Unknown Quantity 
- produces the best  educated guess possible based on the available data. We all want estimates of things that are just plan impossible to know exactly. Here are some examples of unknowns to be estimated:
Описание слайда:
Estimating an Unknown Quantity - produces the best educated guess possible based on the available data. We all want estimates of things that are just plan impossible to know exactly. Here are some examples of unknowns to be estimated:

Слайд 37





Estimating an Unknown Quantity 
Next period (quarter’s) sales.
What the government will do next to our tax rates.
How the population of region will react to a new product.
How your portfolio of investment will fare next  year.
The productivity gains of a change in strategy.
The defect  rate in a manufacturing process.
Описание слайда:
Estimating an Unknown Quantity Next period (quarter’s) sales. What the government will do next to our tax rates. How the population of region will react to a new product. How your portfolio of investment will fare next year. The productivity gains of a change in strategy. The defect rate in a manufacturing process.

Слайд 38





Statistics can shed light on some of these situations by producing a good, educated guess when reliable data are available. Keep in mind that all statistical estimates are just guesses and are, consequently, often wrong. However, they will serve their purpose when they are close enough to the unknown truth to be useful. If you knew how accurate these estimates were (approximately), you could decide how much attention to give them.
Statistics can shed light on some of these situations by producing a good, educated guess when reliable data are available. Keep in mind that all statistical estimates are just guesses and are, consequently, often wrong. However, they will serve their purpose when they are close enough to the unknown truth to be useful. If you knew how accurate these estimates were (approximately), you could decide how much attention to give them.
Описание слайда:
Statistics can shed light on some of these situations by producing a good, educated guess when reliable data are available. Keep in mind that all statistical estimates are just guesses and are, consequently, often wrong. However, they will serve their purpose when they are close enough to the unknown truth to be useful. If you knew how accurate these estimates were (approximately), you could decide how much attention to give them. Statistics can shed light on some of these situations by producing a good, educated guess when reliable data are available. Keep in mind that all statistical estimates are just guesses and are, consequently, often wrong. However, they will serve their purpose when they are close enough to the unknown truth to be useful. If you knew how accurate these estimates were (approximately), you could decide how much attention to give them.

Слайд 39





Statistical estimation also provides an indication of the amount of uncertainty or error involved in the guess, accounting for the consequences of random selection of a sample from a large population. The confidence interval gives probable upper and lower bounds on the unknown quantity being estimated, as if to say, I’m not sure exactly what the answer is, but I’m quite confident it’s between these two number.
Statistical estimation also provides an indication of the amount of uncertainty or error involved in the guess, accounting for the consequences of random selection of a sample from a large population. The confidence interval gives probable upper and lower bounds on the unknown quantity being estimated, as if to say, I’m not sure exactly what the answer is, but I’m quite confident it’s between these two number.
Описание слайда:
Statistical estimation also provides an indication of the amount of uncertainty or error involved in the guess, accounting for the consequences of random selection of a sample from a large population. The confidence interval gives probable upper and lower bounds on the unknown quantity being estimated, as if to say, I’m not sure exactly what the answer is, but I’m quite confident it’s between these two number. Statistical estimation also provides an indication of the amount of uncertainty or error involved in the guess, accounting for the consequences of random selection of a sample from a large population. The confidence interval gives probable upper and lower bounds on the unknown quantity being estimated, as if to say, I’m not sure exactly what the answer is, but I’m quite confident it’s between these two number.

Слайд 40





Hypothesis testing
Statistical hypothesis testing is the use of data in deciding between two (or more) different possibilities in order to resolve an issue in an ambiguous situation. Hypothesis testing produces a definite decision about which of the possibilities is correct, based on data. The procedure is to collect data that will help decide among the possibilities and to use careful statistical analysis for extra power when the answer is not obvious from just glancing at the data.
Описание слайда:
Hypothesis testing Statistical hypothesis testing is the use of data in deciding between two (or more) different possibilities in order to resolve an issue in an ambiguous situation. Hypothesis testing produces a definite decision about which of the possibilities is correct, based on data. The procedure is to collect data that will help decide among the possibilities and to use careful statistical analysis for extra power when the answer is not obvious from just glancing at the data.

Слайд 41





Here are some examples of hypothesis that might be tested using data:
Here are some examples of hypothesis that might be tested using data:
The average New Yorker plans to spend at least 10$ on your product next month.
You will win tomorrow’s election.
A new medical treatment is safe and effective.
Brand X produces a whiter, brighter wash.
The error in a financial statement is smaller than some material amount.
It is possible to predict the stock market based on careful analysis of the past.
The manufacturing defect rate is below that expected by customers.
Описание слайда:
Here are some examples of hypothesis that might be tested using data: Here are some examples of hypothesis that might be tested using data: The average New Yorker plans to spend at least 10$ on your product next month. You will win tomorrow’s election. A new medical treatment is safe and effective. Brand X produces a whiter, brighter wash. The error in a financial statement is smaller than some material amount. It is possible to predict the stock market based on careful analysis of the past. The manufacturing defect rate is below that expected by customers.

Слайд 42





Note that each hypothesis makes a definite statement, and it may be either true or false. The result of a statistical hypothesis test is the conclusion that either the data support the hypothesis or they don’t.
Note that each hypothesis makes a definite statement, and it may be either true or false. The result of a statistical hypothesis test is the conclusion that either the data support the hypothesis or they don’t.
Описание слайда:
Note that each hypothesis makes a definite statement, and it may be either true or false. The result of a statistical hypothesis test is the conclusion that either the data support the hypothesis or they don’t. Note that each hypothesis makes a definite statement, and it may be either true or false. The result of a statistical hypothesis test is the conclusion that either the data support the hypothesis or they don’t.

Слайд 43


Business statistics, слайд №43
Описание слайда:

Слайд 44





What is “Statistics”?
Statistics  is the science of data that involves:
Collecting
Classifying
Summarizing
Organizing and
Interpretation
Описание слайда:
What is “Statistics”? Statistics is the science of data that involves: Collecting Classifying Summarizing Organizing and Interpretation

Слайд 45





Statistical Methods
The methods by which statistical data are analyzed are called statistical methods.
Statistical methods are applicable to a very large number of fields- economics, sociology, anthropology, business, agriculture, psychology, medicine and education.
Statistical methods are used by governmental bodies, private business firms, and research agencies as an indispensable aid in                i) forecasting ii) controlling and iii) exploring.
Описание слайда:
Statistical Methods The methods by which statistical data are analyzed are called statistical methods. Statistical methods are applicable to a very large number of fields- economics, sociology, anthropology, business, agriculture, psychology, medicine and education. Statistical methods are used by governmental bodies, private business firms, and research agencies as an indispensable aid in i) forecasting ii) controlling and iii) exploring.

Слайд 46





Statistical Methods
There are five stages in a statistical investigation: 
1.Collection: Utmost care must be exercised in collecting data because they form the foundation of statistical analysis. If data are faulty, the conclusion drawn can never be reliable. The data may be available from existing published or unpublished sources or else may be collected by investigator himself.
Описание слайда:
Statistical Methods There are five stages in a statistical investigation: 1.Collection: Utmost care must be exercised in collecting data because they form the foundation of statistical analysis. If data are faulty, the conclusion drawn can never be reliable. The data may be available from existing published or unpublished sources or else may be collected by investigator himself.

Слайд 47






2. Organization: Data from published sources are generally in organized form. Data from survey needs organization. The first step is data editing so that the omissions, inconsistencies, irrelevant answers and wrong computation in the returns may be corrected or adjusted. The second step is to classify data and the last step is tabulation of data-arrange data in rows and columns.
Описание слайда:
2. Organization: Data from published sources are generally in organized form. Data from survey needs organization. The first step is data editing so that the omissions, inconsistencies, irrelevant answers and wrong computation in the returns may be corrected or adjusted. The second step is to classify data and the last step is tabulation of data-arrange data in rows and columns.

Слайд 48






3.Presentation: After the data have been collected and organized, they are ready for presentation. It facilitates statistical analysis.
4. Analysis: Data are analyzed mostly in tabular form. Methods used are numerous ranging from simple observation of data to complicated, sophisticated and highly mathematical techniques.
Описание слайда:
3.Presentation: After the data have been collected and organized, they are ready for presentation. It facilitates statistical analysis. 4. Analysis: Data are analyzed mostly in tabular form. Methods used are numerous ranging from simple observation of data to complicated, sophisticated and highly mathematical techniques.

Слайд 49






5.Interpretation: Drawing conclusions from the data collected and analyzed. It is a difficult task and necessitates a high degree of skills and experience. Correct interpretation will lead to a valid conclusion of the study and thus can aid in decision-making.
Описание слайда:
5.Interpretation: Drawing conclusions from the data collected and analyzed. It is a difficult task and necessitates a high degree of skills and experience. Correct interpretation will lead to a valid conclusion of the study and thus can aid in decision-making.

Слайд 50





Statistics: Science or Art
Whether statistics is a science or an art is often a subject of debate. Science refers to a systematized body of knowledge. It studies cause and effect relationship and attempts to make generalizations in the form of scientific principles or laws. It describes facts objectively and avoids vague judgments as good as bad. 
Science, in short, is like a lighthouse that gives light to the ships to find out their own way but does not indicate the direction in which they should go.
Описание слайда:
Statistics: Science or Art Whether statistics is a science or an art is often a subject of debate. Science refers to a systematized body of knowledge. It studies cause and effect relationship and attempts to make generalizations in the form of scientific principles or laws. It describes facts objectively and avoids vague judgments as good as bad. Science, in short, is like a lighthouse that gives light to the ships to find out their own way but does not indicate the direction in which they should go.

Слайд 51






Art, on the other hand, refers to the skill of handling facts so as to achieve a given objective. It is concerned with ways and means of presenting and handling data, making inferences logically and drawing relevant conclusions. 
If science is knowledge, the art is action.
Описание слайда:
Art, on the other hand, refers to the skill of handling facts so as to achieve a given objective. It is concerned with ways and means of presenting and handling data, making inferences logically and drawing relevant conclusions. If science is knowledge, the art is action.

Слайд 52





Functions of Statistics
Definiteness: To present general statements in a precise and definite form. The sex ratio (i.e. number of females per 1000males) is going up in Belarus. 
    
     The sex ratio has gone up from 927 in 1991 to 933 in 2001.
Condensation: It simplifies mass of data into a few significant figures.
Comparison: It facilitates comparison.
Описание слайда:
Functions of Statistics Definiteness: To present general statements in a precise and definite form. The sex ratio (i.e. number of females per 1000males) is going up in Belarus. The sex ratio has gone up from 927 in 1991 to 933 in 2001. Condensation: It simplifies mass of data into a few significant figures. Comparison: It facilitates comparison.

Слайд 53





Formulating and testing Hypothesis: Statistical methods are extremely useful in formulating and testing hypothesis and to develop new theories.
Formulating and testing Hypothesis: Statistical methods are extremely useful in formulating and testing hypothesis and to develop new theories.
Prediction: Statistical methods provide helpful means of forecasting future events.
Formulation of policies: Statistics provide the basic material for framing suitable policies. How much oil a nation should import in 2005.
Описание слайда:
Formulating and testing Hypothesis: Statistical methods are extremely useful in formulating and testing hypothesis and to develop new theories. Formulating and testing Hypothesis: Statistical methods are extremely useful in formulating and testing hypothesis and to develop new theories. Prediction: Statistical methods provide helpful means of forecasting future events. Formulation of policies: Statistics provide the basic material for framing suitable policies. How much oil a nation should import in 2005.

Слайд 54





Dealing with Uncertainty
Everyday decisions are based on incomplete information

Consider:

The price of IBM stock will be higher in six months than it is now. 
If the federal budget deficit is as high as predicted, interest rates will remain high for the rest of the year.
Описание слайда:
Dealing with Uncertainty Everyday decisions are based on incomplete information Consider: The price of IBM stock will be higher in six months than it is now. If the federal budget deficit is as high as predicted, interest rates will remain high for the rest of the year.

Слайд 55





Dealing with Uncertainty
Because of uncertainty, the statements should be modified:


The price of IBM stock is likely to be higher in six months than it is now. 
If the federal budget deficit is as high as predicted, it is probable that interest rates will remain high for the rest of the year.
Описание слайда:
Dealing with Uncertainty Because of uncertainty, the statements should be modified: The price of IBM stock is likely to be higher in six months than it is now. If the federal budget deficit is as high as predicted, it is probable that interest rates will remain high for the rest of the year.

Слайд 56





Basic concepts of Statistics 
Basic concepts of Statistics 
–  Parameter 
  •  Computed from the universe. 
–  Statistic 
  •  Computed from the subset taken from the universe. 
– Variable 
   •  Characteristic of the item being observed or measured. 
–  Data 
    •  Collection of observations on one or more variable.
Описание слайда:
Basic concepts of Statistics Basic concepts of Statistics – Parameter • Computed from the universe. – Statistic • Computed from the subset taken from the universe. – Variable • Characteristic of the item being observed or measured. – Data • Collection of observations on one or more variable.

Слайд 57





    Basic concepts of Statistics 
    Basic concepts of Statistics 
 
 –  Population 
 • Entire group we want information about. 
–  Sample 
 •  The proportion of the population we actually examine. 
 • Representative and not biased. 
 • Random sampling.
Описание слайда:
Basic concepts of Statistics Basic concepts of Statistics – Population • Entire group we want information about. – Sample • The proportion of the population we actually examine. • Representative and not biased. • Random sampling.

Слайд 58





Basic concepts of Statistics 
Basic concepts of Statistics 
    
–  Census 
 Investigate the whole population 
 Expensive 
 Time consuming 
 Sections of population is inaccessible 
 Units are destroyed 
 Inaccurate
Описание слайда:
Basic concepts of Statistics Basic concepts of Statistics – Census Investigate the whole population Expensive Time consuming Sections of population is inaccessible Units are destroyed Inaccurate

Слайд 59


Business statistics, слайд №59
Описание слайда:

Слайд 60





Key Definitions
What is Data?
   facts or information that is relevant or appropriate to a decision maker
A population is the collection of all items of interest or under investigation
N represents the population size
A sample is an observed subset of the population
n represents the sample size
Описание слайда:
Key Definitions What is Data? facts or information that is relevant or appropriate to a decision maker A population is the collection of all items of interest or under investigation N represents the population size A sample is an observed subset of the population n represents the sample size

Слайд 61





Key Definitions
A parameter is a specific characteristic of a population
A statistic is a specific characteristic of a sample
Описание слайда:
Key Definitions A parameter is a specific characteristic of a population A statistic is a specific characteristic of a sample

Слайд 62





Population vs. Sample
Описание слайда:
Population vs. Sample

Слайд 63





Examples of Populations
Names of all registered voters in the United States
 Incomes of all families living in Belarus
 Annual returns of all stocks traded on the New York Stock Exchange
 Grade point averages of all the students in your university
Описание слайда:
Examples of Populations Names of all registered voters in the United States Incomes of all families living in Belarus Annual returns of all stocks traded on the New York Stock Exchange Grade point averages of all the students in your university

Слайд 64





Random Sampling
Simple random sampling is a procedure in which
 each member of the population is chosen strictly by chance,
each member of the population is equally likely to be chosen, 
and
every possible sample of  n  objects is equally likely to be chosen
The resulting sample is called a random sample
Описание слайда:
Random Sampling Simple random sampling is a procedure in which each member of the population is chosen strictly by chance, each member of the population is equally likely to be chosen, and every possible sample of n objects is equally likely to be chosen The resulting sample is called a random sample

Слайд 65





Variables
Traits or characteristics that can change values from case to case. 
A variable is what is measured or manipulated in an experiment
•Examples:
•Age
•Gender
•Income
•Social class
Описание слайда:
Variables Traits or characteristics that can change values from case to case. A variable is what is measured or manipulated in an experiment •Examples: •Age •Gender •Income •Social class

Слайд 66





Types Of Variables
In causal relationships:
CAUSE =>EFFECT
independent variable & dependent variable
•Independent variable: is a variable that can be controlled or manipulated.
An independent variable is the variable you have control over (dose of drug)
•Dependent variable: is a variable that cannot be controlled or manipulated. Its values are predicted from the independent variable ( effect on the condition)
Описание слайда:
Types Of Variables In causal relationships: CAUSE =>EFFECT independent variable & dependent variable •Independent variable: is a variable that can be controlled or manipulated. An independent variable is the variable you have control over (dose of drug) •Dependent variable: is a variable that cannot be controlled or manipulated. Its values are predicted from the independent variable ( effect on the condition)

Слайд 67





Types Of Variables
•Discrete variables are measured in units that cannot be subdivided. Example: Number of children
•Continuous variables are measured in a unit that can be subdivided infinitely. Example: Height
Описание слайда:
Types Of Variables •Discrete variables are measured in units that cannot be subdivided. Example: Number of children •Continuous variables are measured in a unit that can be subdivided infinitely. Example: Height

Слайд 68





Descriptive and Inferential Statistics
Two branches of statistics:
Descriptive statistics
Collecting, summarizing, and processing data to transform data into information
Inferential statistics
provide the bases for predictions, forecasts, and estimates that are used to transform information into knowledge
Описание слайда:
Descriptive and Inferential Statistics Two branches of statistics: Descriptive statistics Collecting, summarizing, and processing data to transform data into information Inferential statistics provide the bases for predictions, forecasts, and estimates that are used to transform information into knowledge

Слайд 69





Descriptive Statistics

Collect data
e.g., Survey
Gives us the overall picture about data
•Presents data in the form of tables, charts and graphs
Описание слайда:
Descriptive Statistics Collect data e.g., Survey Gives us the overall picture about data •Presents data in the form of tables, charts and graphs

Слайд 70





Descriptive Statistics
Summarize data
e.g., Sample mean = 
•Avoids inferences
Examples:
•Measures of central location
Mean, median, mode and midrange
•Measures of Variation
•Variance, Standard Deviation, z-scores
Описание слайда:
Descriptive Statistics Summarize data e.g., Sample mean = •Avoids inferences Examples: •Measures of central location Mean, median, mode and midrange •Measures of Variation •Variance, Standard Deviation, z-scores

Слайд 71





Inferential Statistics
•Take decision on overall population using a sample 
“Sampled” data are incomplete but can still be representative of the population
•Permits the making of generalizations (inferences) about the data
Probability theory is a major tool used to analyze sampled data
Описание слайда:
Inferential Statistics •Take decision on overall population using a sample “Sampled” data are incomplete but can still be representative of the population •Permits the making of generalizations (inferences) about the data Probability theory is a major tool used to analyze sampled data

Слайд 72





Inferential Statistics
Estimation
e.g., Estimate the population mean weight using the sample mean weight
Hypothesis testing
e.g., Test the claim that the population mean weight is 120 pounds
Описание слайда:
Inferential Statistics Estimation e.g., Estimate the population mean weight using the sample mean weight Hypothesis testing e.g., Test the claim that the population mean weight is 120 pounds

Слайд 73





Predictive Modeling
The science of predicting future outcomes based on historical events.
Model Building: “Developing set of equations or mathematical formulation to forecast future behaviors based on current or historical data.”
Regression, logistic Regression, time series analysis etc.
Описание слайда:
Predictive Modeling The science of predicting future outcomes based on historical events. Model Building: “Developing set of equations or mathematical formulation to forecast future behaviors based on current or historical data.” Regression, logistic Regression, time series analysis etc.

Слайд 74





The Decision Making Process
Описание слайда:
The Decision Making Process

Слайд 75





Why We Need Data
To provide input to survey	
To provide input to study
To measure performance of service or production process
To evaluate conformance to standards
To assist in formulating alternative courses   of action
To satisfy curiosity
Описание слайда:
Why We Need Data To provide input to survey To provide input to study To measure performance of service or production process To evaluate conformance to standards To assist in formulating alternative courses of action To satisfy curiosity

Слайд 76





Data Sources
Описание слайда:
Data Sources

Слайд 77





Types of Data
Описание слайда:
Types of Data

Слайд 78


Business statistics, слайд №78
Описание слайда:

Слайд 79


Business statistics, слайд №79
Описание слайда:

Слайд 80





Problems associated with the collection 
Problems associated with the collection 
   of data: 
    – Characteristics have to be measured. 
    – Measurements can be complicated. 
    – Measurements must be valid and accurate. 
    – Secondary data not easy to validate. 
    – Data can be incomplete, typographical errors, small sample. 
    – Biased or misleading responses.
Описание слайда:
Problems associated with the collection Problems associated with the collection of data: – Characteristics have to be measured. – Measurements can be complicated. – Measurements must be valid and accurate. – Secondary data not easy to validate. – Data can be incomplete, typographical errors, small sample. – Biased or misleading responses.

Слайд 81





Problems associated with the collection 
Problems associated with the collection 
of data: 
 – Make sure of the following: 
• Who conducted the study? 
• What data was collected? 
• What sampling method was used? 
• Sample size? 
• Chance of bias? 
•  Is data relevant to the problem at hand?
Описание слайда:
Problems associated with the collection Problems associated with the collection of data: – Make sure of the following: • Who conducted the study? • What data was collected? • What sampling method was used? • Sample size? • Chance of bias? • Is data relevant to the problem at hand?

Слайд 82





How to design a questionnaire 
How to design a questionnaire 
– Questions should: 
•  Be simply stated. 
•  Have no suggestion of a specific answer. 
•  Be specific and address only one issue. 
• Carefully word sensitive issues. 
•  Not require calculations or a study to be answered. 
 –  Types of questions: 
• Closed 
• Open 
• Combined
Описание слайда:
How to design a questionnaire How to design a questionnaire – Questions should: • Be simply stated. • Have no suggestion of a specific answer. • Be specific and address only one issue. • Carefully word sensitive issues. • Not require calculations or a study to be answered. – Types of questions: • Closed • Open • Combined

Слайд 83





 Appearance and layout of a questionnaire 
 Appearance and layout of a questionnaire 
– Attractive look. 
–  Coloured paper. 
–  Clear instructions on how to complete. 
–  Reasonably short. 
–  Enough space to complete questions. 
–  Mother-tongue language. 
–  Interesting questions first. 
–  Simple questions first, controversial questions later. 
–  Complete one topic before starting the next. 
–  Important information first.
Описание слайда:
Appearance and layout of a questionnaire Appearance and layout of a questionnaire – Attractive look. – Coloured paper. – Clear instructions on how to complete. – Reasonably short. – Enough space to complete questions. – Mother-tongue language. – Interesting questions first. – Simple questions first, controversial questions later. – Complete one topic before starting the next. – Important information first.

Слайд 84





Interview 
Interview 
– Fieldworker completed questionnaire 
•  Higher response rate and data collection is immediate. 
– Mailed questionnaires 
• When population is large or dispersed. 
•  Low response rate. 
• Time consuming. 
– Telephone interview 
•  Lower costs. 
• Quicker contact with geographically dispersed  respondents.
Описание слайда:
Interview Interview – Fieldworker completed questionnaire • Higher response rate and data collection is immediate. – Mailed questionnaires • When population is large or dispersed. • Low response rate. • Time consuming. – Telephone interview • Lower costs. • Quicker contact with geographically dispersed respondents.

Слайд 85





Editing the data 
Editing the data 
 – Obvious errors should be eliminated. 
 – Eliminate questionnaires that are incomplete  and unreliable. 
 – Questionnaires should be pre-tested on a small group of people.
Описание слайда:
Editing the data Editing the data – Obvious errors should be eliminated. – Eliminate questionnaires that are incomplete and unreliable. – Questionnaires should be pre-tested on a small group of people.

Слайд 86


Business statistics, слайд №86
Описание слайда:

Слайд 87





Levels of Measurement
and Measurement Scales
Описание слайда:
Levels of Measurement and Measurement Scales

Слайд 88





Evaluating Survey Worthiness
What is the purpose of the survey?
Is the survey based on a probability sample?
Coverage error – appropriate frame?
Non-response error – follow up
Measurement error – good questions elicit good responses
Sampling error – always exists
Описание слайда:
Evaluating Survey Worthiness What is the purpose of the survey? Is the survey based on a probability sample? Coverage error – appropriate frame? Non-response error – follow up Measurement error – good questions elicit good responses Sampling error – always exists

Слайд 89





Types of Survey Errors
Coverage error or selection bias
Exists if some groups are excluded from the frame and have no chance of being selected
Non response error or bias
People who do not respond may be different from those who do respond
Sampling error
Variation from sample to sample will always exist
Measurement error
Due to weaknesses in question design, respondent error, and interviewer’s effects on the respondent
Описание слайда:
Types of Survey Errors Coverage error or selection bias Exists if some groups are excluded from the frame and have no chance of being selected Non response error or bias People who do not respond may be different from those who do respond Sampling error Variation from sample to sample will always exist Measurement error Due to weaknesses in question design, respondent error, and interviewer’s effects on the respondent

Слайд 90





Types of Survey Errors
Coverage error
Non response error
Sampling error
Measurement error
Описание слайда:
Types of Survey Errors Coverage error Non response error Sampling error Measurement error

Слайд 91





What do we expect from the statistical analysis?
To find out whether there is a statistically significant difference between our sample
   and general population
Описание слайда:
What do we expect from the statistical analysis? To find out whether there is a statistically significant difference between our sample and general population



Теги Business statistics
Похожие презентации
Mypresentation.ru
Загрузить презентацию