🗊Презентация Fast Frequency and Response Measurements using FFTs

Категория: Технология
Нажмите для полного просмотра!
Fast Frequency and Response Measurements using FFTs, слайд №1Fast Frequency and Response Measurements using FFTs, слайд №2Fast Frequency and Response Measurements using FFTs, слайд №3Fast Frequency and Response Measurements using FFTs, слайд №4Fast Frequency and Response Measurements using FFTs, слайд №5Fast Frequency and Response Measurements using FFTs, слайд №6Fast Frequency and Response Measurements using FFTs, слайд №7Fast Frequency and Response Measurements using FFTs, слайд №8Fast Frequency and Response Measurements using FFTs, слайд №9Fast Frequency and Response Measurements using FFTs, слайд №10Fast Frequency and Response Measurements using FFTs, слайд №11Fast Frequency and Response Measurements using FFTs, слайд №12Fast Frequency and Response Measurements using FFTs, слайд №13Fast Frequency and Response Measurements using FFTs, слайд №14Fast Frequency and Response Measurements using FFTs, слайд №15Fast Frequency and Response Measurements using FFTs, слайд №16Fast Frequency and Response Measurements using FFTs, слайд №17Fast Frequency and Response Measurements using FFTs, слайд №18Fast Frequency and Response Measurements using FFTs, слайд №19Fast Frequency and Response Measurements using FFTs, слайд №20Fast Frequency and Response Measurements using FFTs, слайд №21Fast Frequency and Response Measurements using FFTs, слайд №22Fast Frequency and Response Measurements using FFTs, слайд №23Fast Frequency and Response Measurements using FFTs, слайд №24Fast Frequency and Response Measurements using FFTs, слайд №25Fast Frequency and Response Measurements using FFTs, слайд №26Fast Frequency and Response Measurements using FFTs, слайд №27Fast Frequency and Response Measurements using FFTs, слайд №28Fast Frequency and Response Measurements using FFTs, слайд №29Fast Frequency and Response Measurements using FFTs, слайд №30Fast Frequency and Response Measurements using FFTs, слайд №31Fast Frequency and Response Measurements using FFTs, слайд №32Fast Frequency and Response Measurements using FFTs, слайд №33

Содержание

Вы можете ознакомиться и скачать презентацию на тему Fast Frequency and Response Measurements using FFTs. Доклад-сообщение содержит 33 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Fast Frequency and Response Measurements using FFTs
Alain Moriat,
Senior Architect 
Fri. 12:45p
Pecan (9B)
Описание слайда:
Fast Frequency and Response Measurements using FFTs Alain Moriat, Senior Architect Fri. 12:45p Pecan (9B)

Слайд 2





Accurately Detect a Tone  
What is the exact frequency and amplitude of a tone embedded in a complex signal?
How fast can I perform these measurements?
How accurate are the results?
Описание слайда:
Accurately Detect a Tone What is the exact frequency and amplitude of a tone embedded in a complex signal? How fast can I perform these measurements? How accurate are the results?

Слайд 3





Presentation Overview
Why use the frequency domain?
FFT – a short introduction
Frequency interpolation
Improvements using windowing
Error evaluation
Amplitude/phase response measurements
Demos
Описание слайда:
Presentation Overview Why use the frequency domain? FFT – a short introduction Frequency interpolation Improvements using windowing Error evaluation Amplitude/phase response measurements Demos

Слайд 4





Clean Single Tone Measurement
Clean sine tone
Easy to measure
Описание слайда:
Clean Single Tone Measurement Clean sine tone Easy to measure

Слайд 5





Noisy Tone Measurement
Noisy signal
Difficult to measure in the time domain
Описание слайда:
Noisy Tone Measurement Noisy signal Difficult to measure in the time domain

Слайд 6





Fast Fourier Transform (FFT) Fundamentals (Ideal Case)
The tone frequency is an exact multiple of the frequency resolution (“hits a bin”)
Описание слайда:
Fast Fourier Transform (FFT) Fundamentals (Ideal Case) The tone frequency is an exact multiple of the frequency resolution (“hits a bin”)

Слайд 7





FFT Fundamentals (Realistic Case)
The tone frequency is not a multiple of the frequency resolution
Описание слайда:
FFT Fundamentals (Realistic Case) The tone frequency is not a multiple of the frequency resolution

Слайд 8





Input Frequency Hits Exactly a Bin
Only one bin is activated
Описание слайда:
Input Frequency Hits Exactly a Bin Only one bin is activated

Слайд 9





Input Frequency is +0.01 Bin “off”
More bins are activated
Описание слайда:
Input Frequency is +0.01 Bin “off” More bins are activated

Слайд 10





Input Frequency is +0.25 Bin “off”
Описание слайда:
Input Frequency is +0.25 Bin “off”

Слайд 11





Input Frequency is +0.50 Bin “off”
Highest side-lobes
Описание слайда:
Input Frequency is +0.50 Bin “off” Highest side-lobes

Слайд 12





Input Frequency is +0.75 Bin “off”
The Side lobe levels decrease
Описание слайда:
Input Frequency is +0.75 Bin “off” The Side lobe levels decrease

Слайд 13





Input Frequency is +1.00 Bin “off”
Only one bin is activated
Описание слайда:
Input Frequency is +1.00 Bin “off” Only one bin is activated

Слайд 14





The Envelope Function
Описание слайда:
The Envelope Function

Слайд 15





The Mathematics
Envelope function:
Bin offset:
Real amplitude:
Описание слайда:
The Mathematics Envelope function: Bin offset: Real amplitude:

Слайд 16





Demo 
Amplitude and frequency detection by 	Sin(x) / x interpolation
Описание слайда:
Demo Amplitude and frequency detection by Sin(x) / x interpolation

Слайд 17





Aliasing of the Side-Lobes
Описание слайда:
Aliasing of the Side-Lobes

Слайд 18





Weighted Measurement
Apply a Window to the signal
Описание слайда:
Weighted Measurement Apply a Window to the signal

Слайд 19





Weighted Spectrum Measurement
Apply a Window to the Signal
Описание слайда:
Weighted Spectrum Measurement Apply a Window to the Signal

Слайд 20





Rectangular and Hanning Windows
Side lobes for Hanning Window are significantly lower than for Rectangular window
Описание слайда:
Rectangular and Hanning Windows Side lobes for Hanning Window are significantly lower than for Rectangular window

Слайд 21





Input Frequency Exactly Hits a Bin
Three bins are activated
Описание слайда:
Input Frequency Exactly Hits a Bin Three bins are activated

Слайд 22





Input Frequency is +0.25 Bin “off”
More bins are activated
Описание слайда:
Input Frequency is +0.25 Bin “off” More bins are activated

Слайд 23





Input Frequency is +0.50 Bin “off”
Highest side-lobes
Описание слайда:
Input Frequency is +0.50 Bin “off” Highest side-lobes

Слайд 24





Input Frequency is +0.75 Bin “off”
The Side lobe levels decrease
Описание слайда:
Input Frequency is +0.75 Bin “off” The Side lobe levels decrease

Слайд 25





Input Frequency is +1.00 Bin “off”
Only three bins activated
Описание слайда:
Input Frequency is +1.00 Bin “off” Only three bins activated

Слайд 26





The Mathematics for Hanning ...
Envelope:
Bin Offset:
Amplitude:
Описание слайда:
The Mathematics for Hanning ... Envelope: Bin Offset: Amplitude:

Слайд 27





A LabVIEW Tool
Tone detector LabVIEW virtual instrument (VI)
Описание слайда:
A LabVIEW Tool Tone detector LabVIEW virtual instrument (VI)

Слайд 28





Demo
Amplitude and frequency detection using a Hanning Window (named after Von Hann)
Real world demo using:
The NI-5411 ARBitrary Waveform Generator
The NI-5911 FLEXible Resolution Oscilloscope
Описание слайда:
Demo Amplitude and frequency detection using a Hanning Window (named after Von Hann) Real world demo using: The NI-5411 ARBitrary Waveform Generator The NI-5911 FLEXible Resolution Oscilloscope

Слайд 29





Frequency Detection Resolution
Описание слайда:
Frequency Detection Resolution

Слайд 30





Amplitude Detection Resolution
Описание слайда:
Amplitude Detection Resolution

Слайд 31





Phase Detection Resolution
Описание слайда:
Phase Detection Resolution

Слайд 32





Conclusions
Traditional counters resolve 10 digits in one second
FFT techniques can do this in much less than 100 ms
Another example of 10X for test
Similar improvements apply to amplitude and phase
Описание слайда:
Conclusions Traditional counters resolve 10 digits in one second FFT techniques can do this in much less than 100 ms Another example of 10X for test Similar improvements apply to amplitude and phase

Слайд 33





Conclusions (Notes Page Only)
Traditional Counters Resolve 10 digits in one second 
FFT Techniques can do this in much less than 100 ms
Another example of 10X for test
Similar improvements apply to Amplitude and Phase
Описание слайда:
Conclusions (Notes Page Only) Traditional Counters Resolve 10 digits in one second FFT Techniques can do this in much less than 100 ms Another example of 10X for test Similar improvements apply to Amplitude and Phase



Похожие презентации
Mypresentation.ru
Загрузить презентацию