🗊Презентация Interconnect delay. (Chapter 7)

Категория: Технология
Нажмите для полного просмотра!
Interconnect delay. (Chapter 7), слайд №1Interconnect delay. (Chapter 7), слайд №2Interconnect delay. (Chapter 7), слайд №3Interconnect delay. (Chapter 7), слайд №4Interconnect delay. (Chapter 7), слайд №5Interconnect delay. (Chapter 7), слайд №6Interconnect delay. (Chapter 7), слайд №7Interconnect delay. (Chapter 7), слайд №8Interconnect delay. (Chapter 7), слайд №9Interconnect delay. (Chapter 7), слайд №10Interconnect delay. (Chapter 7), слайд №11Interconnect delay. (Chapter 7), слайд №12Interconnect delay. (Chapter 7), слайд №13Interconnect delay. (Chapter 7), слайд №14Interconnect delay. (Chapter 7), слайд №15Interconnect delay. (Chapter 7), слайд №16Interconnect delay. (Chapter 7), слайд №17Interconnect delay. (Chapter 7), слайд №18Interconnect delay. (Chapter 7), слайд №19Interconnect delay. (Chapter 7), слайд №20Interconnect delay. (Chapter 7), слайд №21Interconnect delay. (Chapter 7), слайд №22Interconnect delay. (Chapter 7), слайд №23Interconnect delay. (Chapter 7), слайд №24Interconnect delay. (Chapter 7), слайд №25Interconnect delay. (Chapter 7), слайд №26Interconnect delay. (Chapter 7), слайд №27Interconnect delay. (Chapter 7), слайд №28Interconnect delay. (Chapter 7), слайд №29Interconnect delay. (Chapter 7), слайд №30Interconnect delay. (Chapter 7), слайд №31Interconnect delay. (Chapter 7), слайд №32Interconnect delay. (Chapter 7), слайд №33Interconnect delay. (Chapter 7), слайд №34Interconnect delay. (Chapter 7), слайд №35Interconnect delay. (Chapter 7), слайд №36Interconnect delay. (Chapter 7), слайд №37Interconnect delay. (Chapter 7), слайд №38Interconnect delay. (Chapter 7), слайд №39Interconnect delay. (Chapter 7), слайд №40Interconnect delay. (Chapter 7), слайд №41Interconnect delay. (Chapter 7), слайд №42Interconnect delay. (Chapter 7), слайд №43Interconnect delay. (Chapter 7), слайд №44Interconnect delay. (Chapter 7), слайд №45Interconnect delay. (Chapter 7), слайд №46Interconnect delay. (Chapter 7), слайд №47Interconnect delay. (Chapter 7), слайд №48Interconnect delay. (Chapter 7), слайд №49Interconnect delay. (Chapter 7), слайд №50Interconnect delay. (Chapter 7), слайд №51Interconnect delay. (Chapter 7), слайд №52Interconnect delay. (Chapter 7), слайд №53Interconnect delay. (Chapter 7), слайд №54Interconnect delay. (Chapter 7), слайд №55Interconnect delay. (Chapter 7), слайд №56Interconnect delay. (Chapter 7), слайд №57Interconnect delay. (Chapter 7), слайд №58

Содержание

Вы можете ознакомиться и скачать презентацию на тему Interconnect delay. (Chapter 7). Доклад-сообщение содержит 58 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





EE 201A
(Starting 2005, called EE 201B)

Modeling and Optimization 
for VLSI Layout
Описание слайда:
EE 201A (Starting 2005, called EE 201B) Modeling and Optimization for VLSI Layout

Слайд 2





Chapter 7 Interconnect Delay
7.1  Elmore Delay
7.2  High-order model and moment matching
7.3  Stage delay calculation
Описание слайда:
Chapter 7 Interconnect Delay 7.1 Elmore Delay 7.2 High-order model and moment matching 7.3 Stage delay calculation

Слайд 3





Basic Circuit Analysis Techniques
Output response
Basic waveforms
Step input
Pulse input
Impulse Input
Use simple input waveforms to understand the impact of network design
Описание слайда:
Basic Circuit Analysis Techniques Output response Basic waveforms Step input Pulse input Impulse Input Use simple input waveforms to understand the impact of network design

Слайд 4





Basic Input Waveforms
Описание слайда:
Basic Input Waveforms

Слайд 5





Step Response vs. Impulse Response
Definitions:
(unit) step input u(t)                       (unit) step response g(t)
(unit) impulse input (t)		(unit) impulse response h(t)		
Relationship
Elmore delay
Описание слайда:
Step Response vs. Impulse Response Definitions: (unit) step input u(t) (unit) step response g(t) (unit) impulse input (t) (unit) impulse response h(t) Relationship Elmore delay

Слайд 6





Analysis of Simple RC Circuit
Описание слайда:
Analysis of Simple RC Circuit

Слайд 7





Analysis of Simple RC Circuit
Описание слайда:
Analysis of Simple RC Circuit

Слайд 8





Delays of Simple RC Circuit
v(t) = v0(1 - e-t/RC) under step input v0u(t)						
v(t)=0.9v0   t = 2.3RC					v(t)=0.5v0   t = 0.7RC						
Commonly used metric						TD = RC  (Elmore delay to be defined later)
Описание слайда:
Delays of Simple RC Circuit v(t) = v0(1 - e-t/RC) under step input v0u(t) v(t)=0.9v0  t = 2.3RC v(t)=0.5v0  t = 0.7RC Commonly used metric TD = RC (Elmore delay to be defined later)

Слайд 9





Lumped Capacitance Delay Model
R = driver resistance
C = total interconnect capacitance + loading capacitance
Sink Delay: td = R·C 
50% delay under step input = 0.7RC
Valid when driver resistance >> interconnect resistance
All sinks have equal delay
Описание слайда:
Lumped Capacitance Delay Model R = driver resistance C = total interconnect capacitance + loading capacitance Sink Delay: td = R·C 50% delay under step input = 0.7RC Valid when driver resistance >> interconnect resistance All sinks have equal delay

Слайд 10





Lumped RC Delay Model
Minimize delay  minimize wire length
Описание слайда:
Lumped RC Delay Model Minimize delay  minimize wire length

Слайд 11





Delay of Distributed RC Lines
Описание слайда:
Delay of Distributed RC Lines

Слайд 12





Delay of Distributed RC Lines (cont’d)
Описание слайда:
Delay of Distributed RC Lines (cont’d)

Слайд 13





Distributed Interconnect Models
Distributed RC circuit model
L,T or  circuits
Distributed RCL circuit model
Tree of transmission lines
Описание слайда:
Distributed Interconnect Models Distributed RC circuit model L,T or  circuits Distributed RCL circuit model Tree of transmission lines

Слайд 14





Distributed RC Circuit Models
Описание слайда:
Distributed RC Circuit Models

Слайд 15





Distributed RLC Circuit Model 
(without mutual inductance)
Описание слайда:
Distributed RLC Circuit Model (without mutual inductance)

Слайд 16





Delays of Complex Circuits under Unit Step Input
Circuits with monotonic response
Easy to define delay & rise/fall time
Commonly used definitions
Delay T50% = time to reach half-value, v(T50%) = 0.5Vdd
Rise/fall time TR = 1/v’(T50%) where v’(t): rate of change of v(t) w.r.t. t
Or rise time = time from 10% to 90% of final value
Problem: lack of general analytical formula for T50% & TR!
Описание слайда:
Delays of Complex Circuits under Unit Step Input Circuits with monotonic response Easy to define delay & rise/fall time Commonly used definitions Delay T50% = time to reach half-value, v(T50%) = 0.5Vdd Rise/fall time TR = 1/v’(T50%) where v’(t): rate of change of v(t) w.r.t. t Or rise time = time from 10% to 90% of final value Problem: lack of general analytical formula for T50% & TR!

Слайд 17





Delays of Complex Circuits under Unit Step Input (cont’d)
Circuits with non-monotonic response
Much more difficult to define delay & rise/fall time
Описание слайда:
Delays of Complex Circuits under Unit Step Input (cont’d) Circuits with non-monotonic response Much more difficult to define delay & rise/fall time

Слайд 18





Elmore Delay for Monotonic Responses
Assumptions:
Unit step input 
Monotone output response
Basic idea: use of mean of v’(t) to approximate median of v’(t)
Описание слайда:
Elmore Delay for Monotonic Responses Assumptions: Unit step input Monotone output response Basic idea: use of mean of v’(t) to approximate median of v’(t)

Слайд 19





Elmore Delay for Monotonic Responses
T50%: median of v’(t), since
Elmore delay TD = mean of v’(t)
Описание слайда:
Elmore Delay for Monotonic Responses T50%: median of v’(t), since Elmore delay TD = mean of v’(t)

Слайд 20





Why Elmore Delay?
Elmore delay is easier to compute analytically in most cases
Elmore’s insight	[Elmore, J. App. Phy 1948]
Verified later on by many other researchers, e.g.
Elmore delay for RC trees [Penfield-Rubinstein, DAC’81]
Elmore delay for RC networks with ramp input [Chan, T-CAS’86]
.....									
For RC trees:   [Krauter-Tatuianu-Willis-Pileggi, DAC’95]		T50%  TD
Note:  Elmore delay is not 50% value delay in general!
Описание слайда:
Why Elmore Delay? Elmore delay is easier to compute analytically in most cases Elmore’s insight [Elmore, J. App. Phy 1948] Verified later on by many other researchers, e.g. Elmore delay for RC trees [Penfield-Rubinstein, DAC’81] Elmore delay for RC networks with ramp input [Chan, T-CAS’86] ..... For RC trees: [Krauter-Tatuianu-Willis-Pileggi, DAC’95] T50%  TD Note: Elmore delay is not 50% value delay in general!

Слайд 21





Elmore Delay for RC Trees
Definition
h(t) = impulse response
TD = mean of h(t)
	     =
Описание слайда:
Elmore Delay for RC Trees Definition h(t) = impulse response TD = mean of h(t) =

Слайд 22





Elmore Delay of a RC Tree
[Rubinstein-Penfield-Horowitz, T-CAD’83]
Описание слайда:
Elmore Delay of a RC Tree [Rubinstein-Penfield-Horowitz, T-CAD’83]

Слайд 23





Elmore Delay in a RC Tree (cont’d)
Описание слайда:
Elmore Delay in a RC Tree (cont’d)

Слайд 24





Elmore Delay in a RC Tree (cont’d)
We shall show later on that 					 i.e. 1-vi(T) goes to 0 at a much faster rate than 1/T when T
Let
Описание слайда:
Elmore Delay in a RC Tree (cont’d) We shall show later on that i.e. 1-vi(T) goes to 0 at a much faster rate than 1/T when T Let

Слайд 25





Some Definitions For Signal Bound Computation
Описание слайда:
Some Definitions For Signal Bound Computation

Слайд 26





Signal Bounds in RC Trees
Theorem
Описание слайда:
Signal Bounds in RC Trees Theorem

Слайд 27





Delay Bounds in RC Trees
Описание слайда:
Delay Bounds in RC Trees

Слайд 28





Computation of Elmore Delay & Delay Bounds in RC Trees
Let C(Tk) be total capacitance of subtree rooted at k
Elmore delay
Описание слайда:
Computation of Elmore Delay & Delay Bounds in RC Trees Let C(Tk) be total capacitance of subtree rooted at k Elmore delay

Слайд 29





Comments on Elmore Delay Model
Advantages
Simple closed-form expression
Useful for interconnect optimization
Upper bound of 50% delay [Gupta et al., DAC’95, TCAD’97]
Actual delay asymptotically approaches Elmore delay as input signal rise time increases
High fidelity [Boese et al., ICCD’93],[Cong-He, TODAES’96]
Good solutions under Elmore delay are good solutions under actual (SPICE) delay
Описание слайда:
Comments on Elmore Delay Model Advantages Simple closed-form expression Useful for interconnect optimization Upper bound of 50% delay [Gupta et al., DAC’95, TCAD’97] Actual delay asymptotically approaches Elmore delay as input signal rise time increases High fidelity [Boese et al., ICCD’93],[Cong-He, TODAES’96] Good solutions under Elmore delay are good solutions under actual (SPICE) delay

Слайд 30





Comments on Elmore Delay Model
Описание слайда:
Comments on Elmore Delay Model

Слайд 31





Chapter 7.2 
Higher-order Delay Model
Описание слайда:
Chapter 7.2 Higher-order Delay Model

Слайд 32





Time Moments of Impulse Response h(t)
Definition of moments
Описание слайда:
Time Moments of Impulse Response h(t) Definition of moments

Слайд 33





Pade Approximation 
H(s) can be modeled by Pade approximation of type (p/q):
where q < p << N
Описание слайда:
Pade Approximation H(s) can be modeled by Pade approximation of type (p/q): where q < p << N

Слайд 34





General Moment Matching Technique
Basic idea: match the moments m-(2q-r), …, m-1, m0, m1, …, mr-1
Описание слайда:
General Moment Matching Technique Basic idea: match the moments m-(2q-r), …, m-1, m0, m1, …, mr-1

Слайд 35





Compute Residues & Poles
Описание слайда:
Compute Residues & Poles

Слайд 36





Basic Steps for Moment Matching
Step 1: Compute 2q moments m-1, m0, m1, …, m(2q-2) of H(s)
Step 2: Solve 2q non-linear equations of EQ1 to get
Описание слайда:
Basic Steps for Moment Matching Step 1: Compute 2q moments m-1, m0, m1, …, m(2q-2) of H(s) Step 2: Solve 2q non-linear equations of EQ1 to get

Слайд 37





Components of Moment Matching Model
Moment computation
Iterative DC analysis on transformed equivalent DC circuit
Recursive computation based on tree traversal
Incremental moment computation 
Moment matching methods
Asymptotic Waveform Evaluation (AWE) [Pillage-Rohrer, TCAD’90]
2-pole method [Horowitz, 1984] [Gao-Zhou, ISCAS’93]...
Moment calculation will be provided as an OPTIONAL reading
Описание слайда:
Components of Moment Matching Model Moment computation Iterative DC analysis on transformed equivalent DC circuit Recursive computation based on tree traversal Incremental moment computation Moment matching methods Asymptotic Waveform Evaluation (AWE) [Pillage-Rohrer, TCAD’90] 2-pole method [Horowitz, 1984] [Gao-Zhou, ISCAS’93]... Moment calculation will be provided as an OPTIONAL reading

Слайд 38





Chapter 7 Interconnect Delay
7.1  Elmore Delay
7.2  High-order model and moment matching
7.3  Stage delay calculation
Описание слайда:
Chapter 7 Interconnect Delay 7.1 Elmore Delay 7.2 High-order model and moment matching 7.3 Stage delay calculation

Слайд 39





Stage Delay
Описание слайда:
Stage Delay

Слайд 40





Modeling of Capacitive Load
First-order approximation: the driver sees the total capacitance of wires and sinks
Problem: Ignore shielding effect of resistance  pessimistic approximation as driving point admittance
Transform interconnect circuit into a -model [O’Brian-Savarino, ICCAD’89]
Problem: cannot be easily used with most device models
Compute effective capacitance from -model [Qian-Pullela-Pileggi, TCAD’94]
Описание слайда:
Modeling of Capacitive Load First-order approximation: the driver sees the total capacitance of wires and sinks Problem: Ignore shielding effect of resistance  pessimistic approximation as driving point admittance Transform interconnect circuit into a -model [O’Brian-Savarino, ICCAD’89] Problem: cannot be easily used with most device models Compute effective capacitance from -model [Qian-Pullela-Pileggi, TCAD’94]

Слайд 41





-Model
[O’Brian-Savarino, ICCAD’89]
Moment matching again!
Consider the first three moments of driving point admittance (moments of response current caused by an applied unit impulse)
Current in the downstream of node k
Описание слайда:
-Model [O’Brian-Savarino, ICCAD’89] Moment matching again! Consider the first three moments of driving point admittance (moments of response current caused by an applied unit impulse) Current in the downstream of node k

Слайд 42





Driving-Point Admittance Approximations
Driving-point admittance = Sum of voltage moment-weighted subtree capacitance
Approximation of the driving point admittance at the driver
Описание слайда:
Driving-Point Admittance Approximations Driving-point admittance = Sum of voltage moment-weighted subtree capacitance Approximation of the driving point admittance at the driver

Слайд 43





Driving-Point Admittance Approximations
First order approximation: y(1) = sum of subtree capacitance
Second order approximation: yk(2) = sum of subtree capacitance weighted by Elmore delay
Описание слайда:
Driving-Point Admittance Approximations First order approximation: y(1) = sum of subtree capacitance Second order approximation: yk(2) = sum of subtree capacitance weighted by Elmore delay

Слайд 44





Third Order Approximation:  Model
Описание слайда:
Third Order Approximation:  Model

Слайд 45





Current Moment Computation
Similar to the voltage moment computation
Iterative tree traversal:
O(n) run-time, O(n) storage
Bottom-up tree traversal:
O(n) run-time
Can achieve O(k) storage if we impose order of traversal, k = max degree of a node
O’Brian and Savarino used bottom-up tree traversal
Описание слайда:
Current Moment Computation Similar to the voltage moment computation Iterative tree traversal: O(n) run-time, O(n) storage Bottom-up tree traversal: O(n) run-time Can achieve O(k) storage if we impose order of traversal, k = max degree of a node O’Brian and Savarino used bottom-up tree traversal

Слайд 46





Bottom-Up Moment Computation
Maintain transfer function Hv~w(s) for sink w in subtree Tv, and moment-weighted capacitance of subtree:
Описание слайда:
Bottom-Up Moment Computation Maintain transfer function Hv~w(s) for sink w in subtree Tv, and moment-weighted capacitance of subtree:

Слайд 47





Current Moment Computation Rule #1
Описание слайда:
Current Moment Computation Rule #1

Слайд 48





Current Moment Computation Rule #2
Описание слайда:
Current Moment Computation Rule #2

Слайд 49





Current Moment Computation Rule #3
Описание слайда:
Current Moment Computation Rule #3

Слайд 50





Current Moment Computation Rule #4
(Merging of Sub-trees)
Описание слайда:
Current Moment Computation Rule #4 (Merging of Sub-trees)

Слайд 51





Example: Uniform Distributed RC Segment
Описание слайда:
Example: Uniform Distributed RC Segment

Слайд 52





Why Effective Capacitance Model?
The -model is incompatible with existing empirical device models
Mapping of 4D empirical data is not practical from a storage or run-time point of view
Convert from a -model to an effective capacitance model for compatibility
Equate the average current in the -load and the Ceff load
Описание слайда:
Why Effective Capacitance Model? The -model is incompatible with existing empirical device models Mapping of 4D empirical data is not practical from a storage or run-time point of view Convert from a -model to an effective capacitance model for compatibility Equate the average current in the -load and the Ceff load

Слайд 53





Equating Average Currents
Описание слайда:
Equating Average Currents

Слайд 54





Waveform Approximation for Vout(t)
Quadratic from initial voltage (Vi = VDD for falling waveform) to 20% point, linear to the 50% point
Voltage waveform and first derivative are continuous at tx
Описание слайда:
Waveform Approximation for Vout(t) Quadratic from initial voltage (Vi = VDD for falling waveform) to 20% point, linear to the 50% point Voltage waveform and first derivative are continuous at tx

Слайд 55





Average Currents in Capacitors
Average current of C1 is not quite as simple:
Current due to quadratic current in C2
Current due to linear current in C2
Описание слайда:
Average Currents in Capacitors Average current of C1 is not quite as simple: Current due to quadratic current in C2 Current due to linear current in C2

Слайд 56





Average Currents in C1
Average current for (0,tx) in C2
Average current for (tx,tD) in C2
Average current for (0,tD) in C2
Описание слайда:
Average Currents in C1 Average current for (0,tx) in C2 Average current for (tx,tD) in C2 Average current for (0,tD) in C2

Слайд 57





Computation of Effective Capacitance
Equating average currents
Problem: tD and tx are not known a priori
Solution: iterative computation
Set the load capacitance equal to total capacitance
Use table-lookup or K-factor equations to obtain tD and tx
Equate average currents and calculate effective capacitance
Set load capacitance equal to effective capacitance and iterate
Описание слайда:
Computation of Effective Capacitance Equating average currents Problem: tD and tx are not known a priori Solution: iterative computation Set the load capacitance equal to total capacitance Use table-lookup or K-factor equations to obtain tD and tx Equate average currents and calculate effective capacitance Set load capacitance equal to effective capacitance and iterate

Слайд 58





 Stage Delay Computation
Calculate output waveform at gate
Using Ceff model to model interconnect
Use the output waveform at gate as the input waveform for interconnect tree load
Apply interconnect reduced-order modeling technique to obtain output waveform at receiver pins
Описание слайда:
Stage Delay Computation Calculate output waveform at gate Using Ceff model to model interconnect Use the output waveform at gate as the input waveform for interconnect tree load Apply interconnect reduced-order modeling technique to obtain output waveform at receiver pins



Похожие презентации
Mypresentation.ru
Загрузить презентацию