🗊Презентация Long-Range Order and Superconductivity

Категория: Физика
Нажмите для полного просмотра!
Long-Range Order and Superconductivity, слайд №1Long-Range Order and Superconductivity, слайд №2Long-Range Order and Superconductivity, слайд №3Long-Range Order and Superconductivity, слайд №4Long-Range Order and Superconductivity, слайд №5Long-Range Order and Superconductivity, слайд №6Long-Range Order and Superconductivity, слайд №7Long-Range Order and Superconductivity, слайд №8Long-Range Order and Superconductivity, слайд №9Long-Range Order and Superconductivity, слайд №10Long-Range Order and Superconductivity, слайд №11Long-Range Order and Superconductivity, слайд №12Long-Range Order and Superconductivity, слайд №13Long-Range Order and Superconductivity, слайд №14Long-Range Order and Superconductivity, слайд №15Long-Range Order and Superconductivity, слайд №16Long-Range Order and Superconductivity, слайд №17Long-Range Order and Superconductivity, слайд №18Long-Range Order and Superconductivity, слайд №19Long-Range Order and Superconductivity, слайд №20Long-Range Order and Superconductivity, слайд №21Long-Range Order and Superconductivity, слайд №22Long-Range Order and Superconductivity, слайд №23Long-Range Order and Superconductivity, слайд №24Long-Range Order and Superconductivity, слайд №25Long-Range Order and Superconductivity, слайд №26Long-Range Order and Superconductivity, слайд №27Long-Range Order and Superconductivity, слайд №28Long-Range Order and Superconductivity, слайд №29Long-Range Order and Superconductivity, слайд №30Long-Range Order and Superconductivity, слайд №31Long-Range Order and Superconductivity, слайд №32Long-Range Order and Superconductivity, слайд №33Long-Range Order and Superconductivity, слайд №34Long-Range Order and Superconductivity, слайд №35Long-Range Order and Superconductivity, слайд №36Long-Range Order and Superconductivity, слайд №37Long-Range Order and Superconductivity, слайд №38Long-Range Order and Superconductivity, слайд №39Long-Range Order and Superconductivity, слайд №40Long-Range Order and Superconductivity, слайд №41

Содержание

Вы можете ознакомиться и скачать презентацию на тему Long-Range Order and Superconductivity. Доклад-сообщение содержит 41 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Long-Range Order and Superconductivity
Alexander Gabovich, KPI, 
Lecture 1
Описание слайда:
Long-Range Order and Superconductivity Alexander Gabovich, KPI, Lecture 1

Слайд 2





Density matrix in quantum mechanics
If one has a large closed quantum-mechanical system with co-ordinates q and a subsystem with co-ordinates x, its wave function Ψ(q,x)  generally speaking does not decompose into two ones, each dependent on q and x.
If f is a physical quantity, its mean value is given by
Описание слайда:
Density matrix in quantum mechanics If one has a large closed quantum-mechanical system with co-ordinates q and a subsystem with co-ordinates x, its wave function Ψ(q,x) generally speaking does not decompose into two ones, each dependent on q and x. If f is a physical quantity, its mean value is given by

Слайд 3





Density matrix in quantum mechanics
In the pure case, when the system concerned is described by the wave function one has
Описание слайда:
Density matrix in quantum mechanics In the pure case, when the system concerned is described by the wave function one has

Слайд 4





Density matrix in quantum mechanics
Another kind of the long-range order is the following:
Описание слайда:
Density matrix in quantum mechanics Another kind of the long-range order is the following:

Слайд 5





Off-diagonal long-range order
Описание слайда:
Off-diagonal long-range order

Слайд 6





Long-range orders below critical lines  of phase transitions (4He)
Описание слайда:
Long-range orders below critical lines of phase transitions (4He)

Слайд 7





Phase transitions
Описание слайда:
Phase transitions

Слайд 8





MICHAEL FARADAY, THE PRECURSOR OF LIQUEFACTION
Michael Faraday, 1791-1867
He liquefied all gases known to him except O2, N2, CO, NO, CH4, H2. Permanent gases? – NO!
COLD WAR OF LIQUEFACTION:  O2 – Louis-Paul  Cailletet (France) and Raoul-Pierre Pictet (Switzerland) [1877]; N2, Ar – Zygmund Wróblewski and Karol Olszewski (Poland) [1883]
Описание слайда:
MICHAEL FARADAY, THE PRECURSOR OF LIQUEFACTION Michael Faraday, 1791-1867 He liquefied all gases known to him except O2, N2, CO, NO, CH4, H2. Permanent gases? – NO! COLD WAR OF LIQUEFACTION: O2 – Louis-Paul Cailletet (France) and Raoul-Pierre Pictet (Switzerland) [1877]; N2, Ar – Zygmund Wróblewski and Karol Olszewski (Poland) [1883]

Слайд 9





JAMES DEWAR, THE COMPETITOR – A MAN, WHO LIQUEFIED HYDROGEN IN 1898
A Dewar flask in the hands of the inventor. James Dewar’s laboratory in the basement of the Royal Institution in London appears as the background.
Описание слайда:
JAMES DEWAR, THE COMPETITOR – A MAN, WHO LIQUEFIED HYDROGEN IN 1898 A Dewar flask in the hands of the inventor. James Dewar’s laboratory in the basement of the Royal Institution in London appears as the background.

Слайд 10





KAMERLINGH-ONNES, THE WINNER – PHYSICIST AND ENGINEER (Nobel Prize in Physics, 1913)
Heike Kamerlingh Onnes (right) in his Cryogenic Laboratory at Leiden  University, with his assistant Gerrit Jan Flim, around the time of the discovery of superconductivity: 1911
Описание слайда:
KAMERLINGH-ONNES, THE WINNER – PHYSICIST AND ENGINEER (Nobel Prize in Physics, 1913) Heike Kamerlingh Onnes (right) in his Cryogenic Laboratory at Leiden University, with his assistant Gerrit Jan Flim, around the time of the discovery of superconductivity: 1911

Слайд 11





LOW TEMPERATURE STUDIES USING LIQUID HELIUM LED TO NEW DISCOVERIES: NOT ONLY SUPERCONDUCTIVITY!
Описание слайда:
LOW TEMPERATURE STUDIES USING LIQUID HELIUM LED TO NEW DISCOVERIES: NOT ONLY SUPERCONDUCTIVITY!

Слайд 12





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 13





SUPERCONDUCTIVITY AMONG ELEMENTS
Описание слайда:
SUPERCONDUCTIVITY AMONG ELEMENTS

Слайд 14





SUPERCONDUCTIVITY, A MIRACLE FOUND BY KAMERLINGH-ONNES
Описание слайда:
SUPERCONDUCTIVITY, A MIRACLE FOUND BY KAMERLINGH-ONNES

Слайд 15





ANNIVERSARIES OF key discoveries
1908-2008 (100) Helium liquefying
1911-2011 (100) Superconductivity
1933-2013 (70) Meissner-Ochsenfeld effect
1956-2011 (55) Cooper pairing concept
1962-2012 (50) Josephson effect
1971-2011 (40) Superfluidity of 3He
1986-2011 (25) High-Tc oxide superconductivity
2001-2011 (10) MgB2 with Tc = 39 K
2008-2013  (5) Iron-based superconductors with Tc = 75 K (in single layers	of FeSe)
Описание слайда:
ANNIVERSARIES OF key discoveries 1908-2008 (100) Helium liquefying 1911-2011 (100) Superconductivity 1933-2013 (70) Meissner-Ochsenfeld effect 1956-2011 (55) Cooper pairing concept 1962-2012 (50) Josephson effect 1971-2011 (40) Superfluidity of 3He 1986-2011 (25) High-Tc oxide superconductivity 2001-2011 (10) MgB2 with Tc = 39 K 2008-2013 (5) Iron-based superconductors with Tc = 75 K (in single layers of FeSe)

Слайд 16





PHENOMENOLOGY. NORMAL METALS
Описание слайда:
PHENOMENOLOGY. NORMAL METALS

Слайд 17





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 18





Magnetic field, magnetic induction, and magnetization
Описание слайда:
Magnetic field, magnetic induction, and magnetization

Слайд 19





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 20





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 21





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 22





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 23





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 24





Creators of the type II superconductors
Описание слайда:
Creators of the type II superconductors

Слайд 25





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 26





Superconducting phenomenology
Описание слайда:
Superconducting phenomenology

Слайд 27





Superconducting phenomenology: London equation
Описание слайда:
Superconducting phenomenology: London equation

Слайд 28





Superconducting phenomenology: London equation
Описание слайда:
Superconducting phenomenology: London equation

Слайд 29





Superconducting phenomenology: London equation
Let us consider the second Newton law mdv/dt = eE. This equations means that there is no resistance! (The main point! – infinite conductivity). 
The current density j = nsev.
Then d(Λj)/dt = E (*), 
where 
Λ=m/(nse2).
One knows that the full and partial time derivative are connected by the equation
d/dt = / t + v.
Since real current velocities v in metals are small in comparison with the Fermi velocity vF, one can replace the full derivative by the partial one. Then
(Λj)/t = E (i).
We have the Maxwell equation (Faraday electromagnetic induction equation):
rot E = − c-1H/t (**).
Let us apply a rotor operation to the equation (i). Then
(Λ rot j)/t = rot E (***).
Описание слайда:
Superconducting phenomenology: London equation Let us consider the second Newton law mdv/dt = eE. This equations means that there is no resistance! (The main point! – infinite conductivity). The current density j = nsev. Then d(Λj)/dt = E (*), where Λ=m/(nse2). One knows that the full and partial time derivative are connected by the equation d/dt = / t + v. Since real current velocities v in metals are small in comparison with the Fermi velocity vF, one can replace the full derivative by the partial one. Then (Λj)/t = E (i). We have the Maxwell equation (Faraday electromagnetic induction equation): rot E = − c-1H/t (**). Let us apply a rotor operation to the equation (i). Then (Λ rot j)/t = rot E (***).

Слайд 30





Superconducting phenomenology: London equation
From (**) and (***) one obtains
(Λ rot j)/t = − c-1H/t (***). Or
/t(rot Λj + c-1H ) =0 (****).
It means that the quantity in the parentheses of Eq. (****) is conserved in time.
Now, it is another main step, that takes into account the superconductivity itself! Specifically, in the bulk of the superconductor both  
j = 0
And
H = 0.
It simply reflects the Meissner effect!
Then
rot Λj + c-1H = 0 (*****).
Equations (*****) and (i) constitute the basis of the London theory.
Описание слайда:
Superconducting phenomenology: London equation From (**) and (***) one obtains (Λ rot j)/t = − c-1H/t (***). Or /t(rot Λj + c-1H ) =0 (****). It means that the quantity in the parentheses of Eq. (****) is conserved in time. Now, it is another main step, that takes into account the superconductivity itself! Specifically, in the bulk of the superconductor both j = 0 And H = 0. It simply reflects the Meissner effect! Then rot Λj + c-1H = 0 (*****). Equations (*****) and (i) constitute the basis of the London theory.

Слайд 31





Superconducting phenomenology: London equation
Equation (*****) and the Maxwell equation
rot H = 4πj/c
leads to the characteristic result of London electrodynamics. Below, we shall write relevant equations in the SI unit system.
Описание слайда:
Superconducting phenomenology: London equation Equation (*****) and the Maxwell equation rot H = 4πj/c leads to the characteristic result of London electrodynamics. Below, we shall write relevant equations in the SI unit system.

Слайд 32





Superconducting phenomenology: London equation
Описание слайда:
Superconducting phenomenology: London equation

Слайд 33





Superconducting phenomenology: London equation
Описание слайда:
Superconducting phenomenology: London equation

Слайд 34





Superconducting phenomenology: London equation
Eq. (3.46) can be transformed and solved to obtain Eq. (3.52). Namely, one knows the vector identity
rot rot B =  div B – Δ B, where B is an arbitrary vector. However, div B = 0, because there are no magnetic charges. Therefore, Δ B = B/2. Now, for the special geometry of Fig. 3.12 one has
Описание слайда:
Superconducting phenomenology: London equation Eq. (3.46) can be transformed and solved to obtain Eq. (3.52). Namely, one knows the vector identity rot rot B =  div B – Δ B, where B is an arbitrary vector. However, div B = 0, because there are no magnetic charges. Therefore, Δ B = B/2. Now, for the special geometry of Fig. 3.12 one has

Слайд 35





Superconducting phenomenology: London equation
Описание слайда:
Superconducting phenomenology: London equation

Слайд 36





Superconducting phenomenology: London-Pippard equation
Описание слайда:
Superconducting phenomenology: London-Pippard equation

Слайд 37





Brian Pippard (1920-2008)
Описание слайда:
Brian Pippard (1920-2008)

Слайд 38





Superconducting phenomenology: London-Pippard equation
Описание слайда:
Superconducting phenomenology: London-Pippard equation

Слайд 39





Superconductors of the first and second kind
Описание слайда:
Superconductors of the first and second kind

Слайд 40





Superconductors of the first and second kind
Описание слайда:
Superconductors of the first and second kind

Слайд 41





The London vortex
Описание слайда:
The London vortex



Похожие презентации
Mypresentation.ru
Загрузить презентацию