🗊Презентация Radiation analysis for space GRAS

Категория: Физика
Нажмите для полного просмотра!
Radiation analysis for space GRAS, слайд №1Radiation analysis for space GRAS, слайд №2Radiation analysis for space GRAS, слайд №3Radiation analysis for space GRAS, слайд №4Radiation analysis for space GRAS, слайд №5Radiation analysis for space GRAS, слайд №6Radiation analysis for space GRAS, слайд №7Radiation analysis for space GRAS, слайд №8Radiation analysis for space GRAS, слайд №9Radiation analysis for space GRAS, слайд №10Radiation analysis for space GRAS, слайд №11Radiation analysis for space GRAS, слайд №12Radiation analysis for space GRAS, слайд №13Radiation analysis for space GRAS, слайд №14Radiation analysis for space GRAS, слайд №15Radiation analysis for space GRAS, слайд №16Radiation analysis for space GRAS, слайд №17Radiation analysis for space GRAS, слайд №18Radiation analysis for space GRAS, слайд №19Radiation analysis for space GRAS, слайд №20Radiation analysis for space GRAS, слайд №21Radiation analysis for space GRAS, слайд №22Radiation analysis for space GRAS, слайд №23Radiation analysis for space GRAS, слайд №24Radiation analysis for space GRAS, слайд №25Radiation analysis for space GRAS, слайд №26Radiation analysis for space GRAS, слайд №27

Вы можете ознакомиться и скачать презентацию на тему Radiation analysis for space GRAS. Доклад-сообщение содержит 27 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Geant4

Radiation Analysis
for Space 

GRAS 

G.Santin1, V.Ivanchenko2, R.Lindberg1, H.Evans1, P. Nieminen1, E.Daly1
1 Space Environments and Effects Analysis Section, ESA/ESTEC
2 PH SFT, CERN
Geant4 Space Users Workshop
Leuven, 5 Oct 2005
Описание слайда:
Geant4 Radiation Analysis for Space GRAS G.Santin1, V.Ivanchenko2, R.Lindberg1, H.Evans1, P. Nieminen1, E.Daly1 1 Space Environments and Effects Analysis Section, ESA/ESTEC 2 PH SFT, CERN Geant4 Space Users Workshop Leuven, 5 Oct 2005

Слайд 2





Outline
Motivation
Description of the tool structure and functionalities
GRAS as 
framework for Monte Carlo analyses
Monte Carlo engine for external packages (e.g. SPENVIS)
Present status, expectations, conclusions
Описание слайда:
Outline Motivation Description of the tool structure and functionalities GRAS as framework for Monte Carlo analyses Monte Carlo engine for external packages (e.g. SPENVIS) Present status, expectations, conclusions

Слайд 3





Simulations of the 
Space Radiation Environment
Описание слайда:
Simulations of the Space Radiation Environment

Слайд 4





Commonly used
Ready to Use 
Simulation Tools
Описание слайда:
Commonly used Ready to Use Simulation Tools

Слайд 5





The example of MULASSIS
Geant4-based tool
Geant4 is a “Toolkit”
Flexible, powerful, extendable,…
But intentionally “not a tool” ready for use
MULASSIS Features
1D Layered geometry via scripting
Geant4-based
Predefined physics lists
Materials by chemical formula
Interfaced to the Space Environment spectra inside the Web-based SPENVIS framework
User success
Raised the level of radiation shielding analysis in the space community
Limitations
1D geometry
Extensibility
Описание слайда:
The example of MULASSIS Geant4-based tool Geant4 is a “Toolkit” Flexible, powerful, extendable,… But intentionally “not a tool” ready for use MULASSIS Features 1D Layered geometry via scripting Geant4-based Predefined physics lists Materials by chemical formula Interfaced to the Space Environment spectra inside the Web-based SPENVIS framework User success Raised the level of radiation shielding analysis in the space community Limitations 1D geometry Extensibility

Слайд 6





GRAS
Geant4 Radiation Analysis for Space
Analysis types
3D
Dose, Fluence, NIEL, activation… for support to engineering and scientific design
Dose Equivalent, Equivalent Dose,… for ESA exploration initiative
SEE: PHS, LET, SEU models
Analysis independent from geometry input format
GDML, CAD, or existing C++ class, …
Pluggable physics lists
Different analyses without re-compilation
Modular / extendable design
Publicly accessible
Описание слайда:
GRAS Geant4 Radiation Analysis for Space Analysis types 3D Dose, Fluence, NIEL, activation… for support to engineering and scientific design Dose Equivalent, Equivalent Dose,… for ESA exploration initiative SEE: PHS, LET, SEU models Analysis independent from geometry input format GDML, CAD, or existing C++ class, … Pluggable physics lists Different analyses without re-compilation Modular / extendable design Publicly accessible

Слайд 7





GRAS components
Описание слайда:
GRAS components

Слайд 8





GRAS components
G4 General Particle Source
Описание слайда:
GRAS components G4 General Particle Source

Слайд 9





GRAS components
Описание слайда:
GRAS components

Слайд 10





GRAS components
Описание слайда:
GRAS components

Слайд 11





GRAS Analysis modules:
Component degradation,
Background
Total Ionizing Dose
Also per incoming particle type, with user choice of interface
Gives event Pulse Height Spectrum
For analysis of induced signal
Units: 
MeV, rad, Gy
Описание слайда:
GRAS Analysis modules: Component degradation, Background Total Ionizing Dose Also per incoming particle type, with user choice of interface Gives event Pulse Height Spectrum For analysis of induced signal Units: MeV, rad, Gy

Слайд 12





GRAS Analysis modules: 
Human Exploration Initiatives
Dose equivalent
ICRP-60  and ICRP-92   LET-based coefficients
Units: 
MeV, Sv, mSv, Gy, rad
Описание слайда:
GRAS Analysis modules: Human Exploration Initiatives Dose equivalent ICRP-60 and ICRP-92 LET-based coefficients Units: MeV, Sv, mSv, Gy, rad

Слайд 13





GRAS Analysis modules: 
SEE in microelectronics
Path length analysis
Event distribution of particle path length in a given set of volumes
If used with “geantinos”, it provides the geometrical contribution to the energy deposition pattern change 
In a 3D model 
W.r.t. a 1D planar irradiation model
Описание слайда:
GRAS Analysis modules: SEE in microelectronics Path length analysis Event distribution of particle path length in a given set of volumes If used with “geantinos”, it provides the geometrical contribution to the energy deposition pattern change In a 3D model W.r.t. a 1D planar irradiation model

Слайд 14





GRAS Analysis modules: 
Flexibility
Volume
To identify a volume in the geometry tree
At present implemented as the couple    (name, copy No)
Volume Interface
To identify the boundary between two volumes
Couple of Volumes
Описание слайда:
GRAS Analysis modules: Flexibility Volume To identify a volume in the geometry tree At present implemented as the couple (name, copy No) Volume Interface To identify the boundary between two volumes Couple of Volumes

Слайд 15





GRAS 
Building blocks
1. Geometry
2. Primary generation
3. Physics
4. Modular analysis set via macros
Описание слайда:
GRAS Building blocks 1. Geometry 2. Primary generation 3. Physics 4. Modular analysis set via macros

Слайд 16






MC analysis with no C++ coding
Geometry via GDML
Physics, Source, Analysis via scripts
Upgrades of  models / interfaces
Описание слайда:
MC analysis with no C++ coding Geometry via GDML Physics, Source, Analysis via scripts Upgrades of models / interfaces

Слайд 17





GRAS Analysis
Modular, extendable design
Описание слайда:
GRAS Analysis Modular, extendable design

Слайд 18





Analysis Module
Easy to implement:
	Self contained analysis element
Initialization, event processing, normalization, printout  all inside
Only one class to create/derive in case a new type of analysis is needed
No need to modify Run+Event+Tracking+Stepping actions
AIDA histogramming “per module”
G4 UI commands “per module”
Automatic module UI tree 
a la GATE
/gras/analysis/dose/addModule doseCrystal
/gras/analysis/dose/doseCrystal/setUnit MeV
Описание слайда:
Analysis Module Easy to implement: Self contained analysis element Initialization, event processing, normalization, printout  all inside Only one class to create/derive in case a new type of analysis is needed No need to modify Run+Event+Tracking+Stepping actions AIDA histogramming “per module” G4 UI commands “per module” Automatic module UI tree a la GATE /gras/analysis/dose/addModule doseCrystal /gras/analysis/dose/doseCrystal/setUnit MeV

Слайд 19





For present Geant4 users
GRAS and previous work
2 ways of obtaining GRAS output without discarding hours/days/months of work
Inserting C++ Geometry, Physics and/or Primary Generator classes inside GRAS
In the main gras.cc
Inserting GRAS into your existing applications
Which way is the fastest depends on existing work
Описание слайда:
For present Geant4 users GRAS and previous work 2 ways of obtaining GRAS output without discarding hours/days/months of work Inserting C++ Geometry, Physics and/or Primary Generator classes inside GRAS In the main gras.cc Inserting GRAS into your existing applications Which way is the fastest depends on existing work

Слайд 20





Engineering tools:
GRAS as flexible Monte Carlo engine
Geometry exchange format
- GDML
- CAD / STEP
- …
Описание слайда:
Engineering tools: GRAS as flexible Monte Carlo engine Geometry exchange format - GDML - CAD / STEP - …

Слайд 21





User Requirements
Complete tool (Geometry, Physics, Source, Analysis)
Available as standalone executable
No need to download and compile Geant4
Easy to integrate in existing applications
Analysis types
3D
Dose, Fluence, NIEL, activation… for support to engineering and scientific design
Dose Equivalent, Equivalent Dose,… for ESA exploration initiative
Transients: PHS, LET, SEU models
Analysis independent from geometry input mode
GDML, or existing C++ class, …
Different analyses set without re-compilation
Modular / extendable design
Source and Physics description adequate to space applications
Solar events
Cosmic rays
Описание слайда:
User Requirements Complete tool (Geometry, Physics, Source, Analysis) Available as standalone executable No need to download and compile Geant4 Easy to integrate in existing applications Analysis types 3D Dose, Fluence, NIEL, activation… for support to engineering and scientific design Dose Equivalent, Equivalent Dose,… for ESA exploration initiative Transients: PHS, LET, SEU models Analysis independent from geometry input mode GDML, or existing C++ class, … Different analyses set without re-compilation Modular / extendable design Source and Physics description adequate to space applications Solar events Cosmic rays

Слайд 22





GRAS is being used for
Herschel
Test beam detector study
Radiation effects to photoconductors and bolometers
JWST
Dose
Background
ConeXpress
See talk by Ronnie Lindberg
Electronic components
Rad-hardness, local shielding, etc.
Описание слайда:
GRAS is being used for Herschel Test beam detector study Radiation effects to photoconductors and bolometers JWST Dose Background ConeXpress See talk by Ronnie Lindberg Electronic components Rad-hardness, local shielding, etc.

Слайд 23





GRAS for
HERSCHEL
Herschel PACS Photoconductor instrument
Study and test of the detector to assess glitch rate 
Impact on science objectives
Simulation of the proton irradiation at Leuven, Belgium
Comparison with glitch data on-going
Need precise description of energy degraders and beam parameters
Extrapolation to detector behavior in space
Описание слайда:
GRAS for HERSCHEL Herschel PACS Photoconductor instrument Study and test of the detector to assess glitch rate Impact on science objectives Simulation of the proton irradiation at Leuven, Belgium Comparison with glitch data on-going Need precise description of energy degraders and beam parameters Extrapolation to detector behavior in space

Слайд 24





GRAS for JWST NIRSpec 
Degradation
Instrument design phase
Radiation shielding, material choice
Описание слайда:
GRAS for JWST NIRSpec Degradation Instrument design phase Radiation shielding, material choice

Слайд 25





GRAS for JWST NIRSpec
Background
Secondary particle production
Shielding effect on the particle flux on the detector
Cosmic Ray background
CRÈME’96 Solar Minimum
Proton simulations
Описание слайда:
GRAS for JWST NIRSpec Background Secondary particle production Shielding effect on the particle flux on the detector Cosmic Ray background CRÈME’96 Solar Minimum Proton simulations

Слайд 26





Status                     Perspectives
CVS repository online
http://geant4.esa.int 
Code
Latest stable tag works with 
Geant4 7.1
GDML 2.3
Documentation
Introduction
README file
Installation
INSTALL file
Detailed User Manual
In preparation
Описание слайда:
Status Perspectives CVS repository online http://geant4.esa.int Code Latest stable tag works with Geant4 7.1 GDML 2.3 Documentation Introduction README file Installation INSTALL file Detailed User Manual In preparation

Слайд 27





Conclusions
Modular, script driven analysis package
Space users oriented, but trying to be generic
Already used in the support of a number of space missions and ground beam tests
GRAS as 
Ready-to-use Geant4 tool for common analysis types
Framework for Monte Carlo analyses
Monte Carlo engine for external packages
GRAS used as framework for on-going ESA contracts
REAT_MS (QinetiQ), Geant4 usability for space applications
	(CAD interface, SEE analysis, Physics lists for space applications)
Open to comments / contributions for collaborative development
http://geant4.esa.int 
We believe GRAS is significantly improving the Geant4 usability
Some features could be used directly by the Geant4 kernel
Related talk
Ronnie Lindberg (ESA) with extensive validation and dosimetry / physics investigations
Описание слайда:
Conclusions Modular, script driven analysis package Space users oriented, but trying to be generic Already used in the support of a number of space missions and ground beam tests GRAS as Ready-to-use Geant4 tool for common analysis types Framework for Monte Carlo analyses Monte Carlo engine for external packages GRAS used as framework for on-going ESA contracts REAT_MS (QinetiQ), Geant4 usability for space applications (CAD interface, SEE analysis, Physics lists for space applications) Open to comments / contributions for collaborative development http://geant4.esa.int We believe GRAS is significantly improving the Geant4 usability Some features could be used directly by the Geant4 kernel Related talk Ronnie Lindberg (ESA) with extensive validation and dosimetry / physics investigations



Похожие презентации
Mypresentation.ru
Загрузить презентацию