🗊Презентация Reinforcement learning of fuzzy logic controllers

Категория: Технология
Нажмите для полного просмотра!
Reinforcement learning of fuzzy logic controllers, слайд №1Reinforcement learning of fuzzy logic controllers, слайд №2Reinforcement learning of fuzzy logic controllers, слайд №3Reinforcement learning of fuzzy logic controllers, слайд №4Reinforcement learning of fuzzy logic controllers, слайд №5Reinforcement learning of fuzzy logic controllers, слайд №6Reinforcement learning of fuzzy logic controllers, слайд №7Reinforcement learning of fuzzy logic controllers, слайд №8Reinforcement learning of fuzzy logic controllers, слайд №9Reinforcement learning of fuzzy logic controllers, слайд №10Reinforcement learning of fuzzy logic controllers, слайд №11Reinforcement learning of fuzzy logic controllers, слайд №12Reinforcement learning of fuzzy logic controllers, слайд №13Reinforcement learning of fuzzy logic controllers, слайд №14Reinforcement learning of fuzzy logic controllers, слайд №15Reinforcement learning of fuzzy logic controllers, слайд №16

Вы можете ознакомиться и скачать презентацию на тему Reinforcement learning of fuzzy logic controllers. Доклад-сообщение содержит 16 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Reinforcement learning of fuzzy logic controllers
Nursadyk D.
Описание слайда:
Reinforcement learning of fuzzy logic controllers Nursadyk D.

Слайд 2





What is fuzzy logic?
Описание слайда:
What is fuzzy logic?

Слайд 3





Fuzzy Logic
Simple example of the logic for temperature regulator that uses a fan might look like this:
Описание слайда:
Fuzzy Logic Simple example of the logic for temperature regulator that uses a fan might look like this:

Слайд 4


Reinforcement learning of fuzzy logic controllers, слайд №4
Описание слайда:

Слайд 5


Reinforcement learning of fuzzy logic controllers, слайд №5
Описание слайда:

Слайд 6


Reinforcement learning of fuzzy logic controllers, слайд №6
Описание слайда:

Слайд 7


Reinforcement learning of fuzzy logic controllers, слайд №7
Описание слайда:

Слайд 8


Reinforcement learning of fuzzy logic controllers, слайд №8
Описание слайда:

Слайд 9


Reinforcement learning of fuzzy logic controllers, слайд №9
Описание слайда:

Слайд 10





There are three types of scheme: 

FLC – Fuzzy Logic Controllers 
NN – Neural Networks 
RL – Reinforcement Learning
Описание слайда:
There are three types of scheme: FLC – Fuzzy Logic Controllers NN – Neural Networks RL – Reinforcement Learning

Слайд 11





FLC
For Sony legged robots, the output action is the discrete command set, each of which can make the robot move single steps in different directions.
Описание слайда:
FLC For Sony legged robots, the output action is the discrete command set, each of which can make the robot move single steps in different directions.

Слайд 12


Reinforcement learning of fuzzy logic controllers, слайд №12
Описание слайда:

Слайд 13





The input state vector is S = [s1, s2]T = [θ, d]T. This behavior is to control the robot to approach the ball by taking action such as MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT TURN, or RIGHT TURN, which are provided by low-level walking software.
The input state vector is S = [s1, s2]T = [θ, d]T. This behavior is to control the robot to approach the ball by taking action such as MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT TURN, or RIGHT TURN, which are provided by low-level walking software.
Описание слайда:
The input state vector is S = [s1, s2]T = [θ, d]T. This behavior is to control the robot to approach the ball by taking action such as MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT TURN, or RIGHT TURN, which are provided by low-level walking software. The input state vector is S = [s1, s2]T = [θ, d]T. This behavior is to control the robot to approach the ball by taking action such as MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT TURN, or RIGHT TURN, which are provided by low-level walking software.

Слайд 14


Reinforcement learning of fuzzy logic controllers, слайд №14
Описание слайда:

Слайд 15





Experimental results
The experimental results show the FLC can be learned by the proposed reinforcement learning scheme.
Описание слайда:
Experimental results The experimental results show the FLC can be learned by the proposed reinforcement learning scheme.

Слайд 16





Thank you for attention!
Thank you for attention!
Описание слайда:
Thank you for attention! Thank you for attention!



Похожие презентации
Mypresentation.ru
Загрузить презентацию