🗊Презентация Арифметические основы компьютерной техники

Категория: Технология
Нажмите для полного просмотра!
Арифметические основы компьютерной техники, слайд №1Арифметические основы компьютерной техники, слайд №2Арифметические основы компьютерной техники, слайд №3Арифметические основы компьютерной техники, слайд №4Арифметические основы компьютерной техники, слайд №5Арифметические основы компьютерной техники, слайд №6Арифметические основы компьютерной техники, слайд №7Арифметические основы компьютерной техники, слайд №8Арифметические основы компьютерной техники, слайд №9Арифметические основы компьютерной техники, слайд №10Арифметические основы компьютерной техники, слайд №11Арифметические основы компьютерной техники, слайд №12Арифметические основы компьютерной техники, слайд №13Арифметические основы компьютерной техники, слайд №14Арифметические основы компьютерной техники, слайд №15Арифметические основы компьютерной техники, слайд №16Арифметические основы компьютерной техники, слайд №17Арифметические основы компьютерной техники, слайд №18Арифметические основы компьютерной техники, слайд №19Арифметические основы компьютерной техники, слайд №20Арифметические основы компьютерной техники, слайд №21Арифметические основы компьютерной техники, слайд №22Арифметические основы компьютерной техники, слайд №23Арифметические основы компьютерной техники, слайд №24Арифметические основы компьютерной техники, слайд №25Арифметические основы компьютерной техники, слайд №26Арифметические основы компьютерной техники, слайд №27Арифметические основы компьютерной техники, слайд №28Арифметические основы компьютерной техники, слайд №29Арифметические основы компьютерной техники, слайд №30Арифметические основы компьютерной техники, слайд №31Арифметические основы компьютерной техники, слайд №32Арифметические основы компьютерной техники, слайд №33Арифметические основы компьютерной техники, слайд №34Арифметические основы компьютерной техники, слайд №35Арифметические основы компьютерной техники, слайд №36Арифметические основы компьютерной техники, слайд №37Арифметические основы компьютерной техники, слайд №38Арифметические основы компьютерной техники, слайд №39Арифметические основы компьютерной техники, слайд №40Арифметические основы компьютерной техники, слайд №41Арифметические основы компьютерной техники, слайд №42Арифметические основы компьютерной техники, слайд №43Арифметические основы компьютерной техники, слайд №44Арифметические основы компьютерной техники, слайд №45Арифметические основы компьютерной техники, слайд №46Арифметические основы компьютерной техники, слайд №47Арифметические основы компьютерной техники, слайд №48Арифметические основы компьютерной техники, слайд №49Арифметические основы компьютерной техники, слайд №50Арифметические основы компьютерной техники, слайд №51Арифметические основы компьютерной техники, слайд №52Арифметические основы компьютерной техники, слайд №53Арифметические основы компьютерной техники, слайд №54Арифметические основы компьютерной техники, слайд №55Арифметические основы компьютерной техники, слайд №56Арифметические основы компьютерной техники, слайд №57Арифметические основы компьютерной техники, слайд №58Арифметические основы компьютерной техники, слайд №59

Содержание

Вы можете ознакомиться и скачать презентацию на тему Арифметические основы компьютерной техники. Доклад-сообщение содержит 59 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





АРИФМЕТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРНОЙ ТЕХНИКИ
Парамонов А.И.
Описание слайда:
АРИФМЕТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРНОЙ ТЕХНИКИ Парамонов А.И.

Слайд 2






Арифметические операции 
над положительными числами
Описание слайда:
Арифметические операции над положительными числами

Слайд 3





ДВОИЧНАЯ АРИФМЕТИКА
Описание слайда:
ДВОИЧНАЯ АРИФМЕТИКА

Слайд 4





Пример: Выполнить сложение двоичных чисел
X=1101, Y=101
Описание слайда:
Пример: Выполнить сложение двоичных чисел X=1101, Y=101

Слайд 5





Пример: Выполнить сложение двоичных чисел
X=1101, Y=101, Z=111
Описание слайда:
Пример: Выполнить сложение двоичных чисел X=1101, Y=101, Z=111

Слайд 6





Пример: Выполнить вычитание из двоичного числа X=10010 числа Y=101
Описание слайда:
Пример: Выполнить вычитание из двоичного числа X=10010 числа Y=101

Слайд 7





Пример: Выполнить умножение двоичных чисел
X=1001, Y=101
Описание слайда:
Пример: Выполнить умножение двоичных чисел X=1001, Y=101

Слайд 8





Пример: Выполнить деление двоичного 
 числа  X=1100.011 на число Y=10.01
Описание слайда:
Пример: Выполнить деление двоичного числа X=1100.011 на число Y=10.01

Слайд 9





Арифметические операции 
в Р-ичных системах счисления 
Во всех позиционных с/с арифметические операции выполняются по одним и тем же правилам согласно соответствующим таблицам сложения и умножения.
Для всех систем счисления справедливы одни и те же законы арифметики: 
коммутативный, 
ассоциативный, 
дистрибутивный, 
а также правила сложения, вычитания, умножения и деления столбиком.
Описание слайда:
Арифметические операции в Р-ичных системах счисления Во всех позиционных с/с арифметические операции выполняются по одним и тем же правилам согласно соответствующим таблицам сложения и умножения. Для всех систем счисления справедливы одни и те же законы арифметики: коммутативный, ассоциативный, дистрибутивный, а также правила сложения, вычитания, умножения и деления столбиком.

Слайд 10





Сложение 
В Р-ичной системе счисления таблица сложения представляет собой результаты сложения каждой цифры алфавита Р-ичной системы с любой другой цифрой этой же системы.
Описание слайда:
Сложение В Р-ичной системе счисления таблица сложения представляет собой результаты сложения каждой цифры алфавита Р-ичной системы с любой другой цифрой этой же системы.

Слайд 11





Деление
При делении столбиком в Р-ичной системе счисления приходится в качестве промежуточных вычислений выполнять действия умножения и вычитания, следовательно, используя таблицы умножения и сложения.
Описание слайда:
Деление При делении столбиком в Р-ичной системе счисления приходится в качестве промежуточных вычислений выполнять действия умножения и вычитания, следовательно, используя таблицы умножения и сложения.

Слайд 12






Арифметика 
с алгебраическими числами
Описание слайда:
Арифметика с алгебраическими числами

Слайд 13





Способы представления целых чисел
Прямой код
Обратный код
Дополнительный код
Описание слайда:
Способы представления целых чисел Прямой код Обратный код Дополнительный код

Слайд 14





Прямой код
Число записывается «как есть», дополняется нулями в старших разрядах до нужного размера.
00101101     45(10)
Запись целого числа А будет формироваться по правилу:
Описание слайда:
Прямой код Число записывается «как есть», дополняется нулями в старших разрядах до нужного размера. 00101101 45(10) Запись целого числа А будет формироваться по правилу:

Слайд 15





Обратный код
Положительное число записывается «как есть», дополняется нулями в старших разрядах до нужного размера.
Отрицательное число записывается инвертированием разрядов модуля числа.
Старший бит определяет знак числа 
(1 — отрицательное, 0 — положительное).
Описание слайда:
Обратный код Положительное число записывается «как есть», дополняется нулями в старших разрядах до нужного размера. Отрицательное число записывается инвертированием разрядов модуля числа. Старший бит определяет знак числа (1 — отрицательное, 0 — положительное).

Слайд 16





Запись целого числа в обратном коде
где 	n – разрядность модульного поля; 
	q – основание системы счисления;
	(2n – 1) – максимальная включенная граница диапазона изменения представляемых чисел.
диапазон изменения чисел А:  (qn – 1) ≥ | A | ≥ 0
Описание слайда:
Запись целого числа в обратном коде где n – разрядность модульного поля; q – основание системы счисления; (2n – 1) – максимальная включенная граница диапазона изменения представляемых чисел. диапазон изменения чисел А: (qn – 1) ≥ | A | ≥ 0

Слайд 17





Запись правильной дроби в обратном коде
где 	n – разрядность поля модуля; 
	1 – q-n – верхняя включенная граница
представляемых чисел.
(1 – q–n) ≥ | А | ≥ 0
Описание слайда:
Запись правильной дроби в обратном коде где n – разрядность поля модуля; 1 – q-n – верхняя включенная граница представляемых чисел. (1 – q–n) ≥ | А | ≥ 0

Слайд 18





Примеры чисел в обратном коде
01100111    103(10)
10011000   –103(10)
00000000      0(10)
11111111     –0(10)
Описание слайда:
Примеры чисел в обратном коде 01100111 103(10) 10011000 –103(10) 00000000 0(10) 11111111 –0(10)

Слайд 19





Дополнительный код
Положительное число записывается «как есть», дополняется нулями в старших разрядах до нужного размера.
Отрицательное число записывается инвертированием разрядов модуля числа и прибавлением 1.
Старший бит определяет знак числа 
(1 — отрицательное, 0 — положительное).
Описание слайда:
Дополнительный код Положительное число записывается «как есть», дополняется нулями в старших разрядах до нужного размера. Отрицательное число записывается инвертированием разрядов модуля числа и прибавлением 1. Старший бит определяет знак числа (1 — отрицательное, 0 — положительное).

Слайд 20





Запись целого числа в дополнительном коде:
Запись числа формируется по следующему правилу:
где	n – разрядность модульного поля,
	q – основание с/с,
	qn – максимальная невключенная граница диапазона изменения чисел. 
(qn)  > |A| ≥ 0;
Описание слайда:
Запись целого числа в дополнительном коде: Запись числа формируется по следующему правилу: где n – разрядность модульного поля, q – основание с/с, qn – максимальная невключенная граница диапазона изменения чисел. (qn) > |A| ≥ 0;

Слайд 21





Запись правильной дроби в дополнительном коде:
где  1 – максимальная невключенная граница диапазона изменения представляемых чисел.
1 > |A| ≥ 0
Описание слайда:
Запись правильной дроби в дополнительном коде: где 1 – максимальная невключенная граница диапазона изменения представляемых чисел. 1 > |A| ≥ 0

Слайд 22





Примеры чисел в дополнительном коде
 42   =   00101010(2)
–42   =   
         00101010
         11010101
         11010110(2)
Описание слайда:
Примеры чисел в дополнительном коде 42 = 00101010(2) –42 = 00101010 11010101 11010110(2)

Слайд 23





Примеры чисел в дополнительном коде
–1       00000001
         11111110
         11111111(2)
 0       00000000(2)
Описание слайда:
Примеры чисел в дополнительном коде –1 00000001 11111110 11111111(2) 0 00000000(2)

Слайд 24






Перевод отрицательного числа из обратного (или дополнительного) кода в прямой выполняется по тем же правилам, что и перевод числа из прямого кода в обратный (или дополнительный):
для перевода отрицательного числа из обратного в прямой код необходимо дополнить его модуль до включенной границы;
для перевода отрицательного числа из дополнительного кода в прямой код необходимо дополнить его модуль до невключенной границы.
Описание слайда:
Перевод отрицательного числа из обратного (или дополнительного) кода в прямой выполняется по тем же правилам, что и перевод числа из прямого кода в обратный (или дополнительный): для перевода отрицательного числа из обратного в прямой код необходимо дополнить его модуль до включенной границы; для перевода отрицательного числа из дополнительного кода в прямой код необходимо дополнить его модуль до невключенной границы.

Слайд 25





Правило формирования модуля обратного кода отрицательного двоичного числа
Для формирования модульной части записи отрицательного числа в обратном коде достаточно в модульной части записи этого числа в прямом коде взять обратные значения всех двоичных разрядов, т. е. необходимо проинвертировать модуль прямого кода.
Описание слайда:
Правило формирования модуля обратного кода отрицательного двоичного числа Для формирования модульной части записи отрицательного числа в обратном коде достаточно в модульной части записи этого числа в прямом коде взять обратные значения всех двоичных разрядов, т. е. необходимо проинвертировать модуль прямого кода.

Слайд 26





Правило формирования модуля дополнительного кода отрицательного числа
Для формирования модульной части записи отрицательного числа в дополнительном коде достаточно в модульной части записи этого числа в прямом коде взять обратные значения всех двоичных разрядов, т. е. необходимо проинвертировать модуль прямого кода и к полученному коду прибавить 1 в младший разряд.
Описание слайда:
Правило формирования модуля дополнительного кода отрицательного числа Для формирования модульной части записи отрицательного числа в дополнительном коде достаточно в модульной части записи этого числа в прямом коде взять обратные значения всех двоичных разрядов, т. е. необходимо проинвертировать модуль прямого кода и к полученному коду прибавить 1 в младший разряд.

Слайд 27






При выполнении операций над числами со знаком в ЭВМ используется одно из его представлений (прямой, дополнительный или обратный код).
Как правило, информация в памяти ЭВМ хранится в прямом коде, а при выполнении операций применяется обратный или дополнительный код.
При использовании дополнительного кода (или обратного) операции вычитания заменяются операциями сложения с изменением знака одного из операндов.
Описание слайда:
При выполнении операций над числами со знаком в ЭВМ используется одно из его представлений (прямой, дополнительный или обратный код). Как правило, информация в памяти ЭВМ хранится в прямом коде, а при выполнении операций применяется обратный или дополнительный код. При использовании дополнительного кода (или обратного) операции вычитания заменяются операциями сложения с изменением знака одного из операндов.

Слайд 28





Операции в дополнительном коде
При сложении чисел, представленных в дополнительном коде, выполняется сложение разрядов, представляющих запись операндов, по правилам двоичной арифметики по всей длине записи чисел, не обращая внимания на границу, которая отделает знаковое поле от модульного.
Переполнение знакового поля игнорируется (т.е. выход за левую границу).
В результате такого сложения будет получен дополнительный код суммы операндов.
Описание слайда:
Операции в дополнительном коде При сложении чисел, представленных в дополнительном коде, выполняется сложение разрядов, представляющих запись операндов, по правилам двоичной арифметики по всей длине записи чисел, не обращая внимания на границу, которая отделает знаковое поле от модульного. Переполнение знакового поля игнорируется (т.е. выход за левую границу). В результате такого сложения будет получен дополнительный код суммы операндов.

Слайд 29





Операции в обратном коде
При сложении чисел, представленных в обратном коде, выполняется сложение разрядов, представляющих запись операндов, по правилам двоичной арифметики по всей длине записи чисел, не обращая внимания на границу, которая отделает знаковое поле от модульного.
Переполнение знакового поля (т.е. выход за левую границу) учитывается как +1 к младшему разряду полученной суммы.
В результате такого сложения будет получен обратный код суммы операндов.
Описание слайда:
Операции в обратном коде При сложении чисел, представленных в обратном коде, выполняется сложение разрядов, представляющих запись операндов, по правилам двоичной арифметики по всей длине записи чисел, не обращая внимания на границу, которая отделает знаковое поле от модульного. Переполнение знакового поля (т.е. выход за левую границу) учитывается как +1 к младшему разряду полученной суммы. В результате такого сложения будет получен обратный код суммы операндов.

Слайд 30





Примеры:
Рассчитать значение C = A-B, если А= 10, В=3.
Описание слайда:
Примеры: Рассчитать значение C = A-B, если А= 10, В=3.

Слайд 31





Примеры:
6 – 4 = ?
6  - положительное число с кодом 0110
–4  - отрицательное число с дополнительным кодом 1100
(перенос игнорируется): 6 – 4 = 2
-5 + 2 = ?
2  - положительное число с кодом 0010
–5  - отрицательное число с дополнительным кодом 1011
Число с кодом 1101 является отрицательным, модуль этого числа имеет код  00112 = 310
Описание слайда:
Примеры: 6 – 4 = ? 6 - положительное число с кодом 0110 –4 - отрицательное число с дополнительным кодом 1100 (перенос игнорируется): 6 – 4 = 2 -5 + 2 = ? 2 - положительное число с кодом 0010 –5 - отрицательное число с дополнительным кодом 1011 Число с кодом 1101 является отрицательным, модуль этого числа имеет код 00112 = 310

Слайд 32





Модифицированные коды
При расчете разрядности n модульного поля весьма трудно бывает учесть диапазон значений результатов, особенно когда последовательность операций, представленных в подлежащих реализации выражениях, достаточно сложна.
Расчёт, выполненный по всем формальным правилам, может дать «абсурдный» результат, так ,например, результат может отличаться по знаку от операндов при одинаковых знаках обоих операндов.
Описание слайда:
Модифицированные коды При расчете разрядности n модульного поля весьма трудно бывает учесть диапазон значений результатов, особенно когда последовательность операций, представленных в подлежащих реализации выражениях, достаточно сложна. Расчёт, выполненный по всем формальным правилам, может дать «абсурдный» результат, так ,например, результат может отличаться по знаку от операндов при одинаковых знаках обоих операндов.

Слайд 33





Модифицированные коды
Более просто ситуация переполнения определяется при применении модифицированного кода (обратного или дополнительного). 
Модифицированные коды отличаются от базовых кодов только тем, что поле знака операндов имеет два разряда, и эти разряды имеют одинаковые значения:
00 – для положительных чисел;
11 – для отрицательных чисел.
Описание слайда:
Модифицированные коды Более просто ситуация переполнения определяется при применении модифицированного кода (обратного или дополнительного). Модифицированные коды отличаются от базовых кодов только тем, что поле знака операндов имеет два разряда, и эти разряды имеют одинаковые значения: 00 – для положительных чисел; 11 – для отрицательных чисел.

Слайд 34





Переполнение модифицированного кода
Если в результате сложения чисел в модифицированном коде полученный результат имеет в поле знака одинаковые значения в обоих разрядах (00 или 11), то переполнения нет, 
если же разряды знакового поля имеют неодинаковые значения (10 или 01), 
то имеет мест переполнение.
Описание слайда:
Переполнение модифицированного кода Если в результате сложения чисел в модифицированном коде полученный результат имеет в поле знака одинаковые значения в обоих разрядах (00 или 11), то переполнения нет, если же разряды знакового поля имеют неодинаковые значения (10 или 01), то имеет мест переполнение.

Слайд 35





Переполнение модифицированного кода
При этом, если в поле знака имеет место значение 01 – результат положительный (фиксируется положительное переполнение), 
а если 10, то полученный результат – отрицательный (фиксируется отрицательное переполнение).
Основным носителем знака числа является 
левый разряд знакового поля.
Описание слайда:
Переполнение модифицированного кода При этом, если в поле знака имеет место значение 01 – результат положительный (фиксируется положительное переполнение), а если 10, то полученный результат – отрицательный (фиксируется отрицательное переполнение). Основным носителем знака числа является левый разряд знакового поля.

Слайд 36





Логическая схема выявления переполнения
Описание слайда:
Логическая схема выявления переполнения

Слайд 37






Логические операции 
с двоичными кодами
Описание слайда:
Логические операции с двоичными кодами

Слайд 38






Логическое суммирование
Логическое умножение
Логическое отрицание
Суммирование по модулю 2
Операции сдвига
Описание слайда:
Логическое суммирование Логическое умножение Логическое отрицание Суммирование по модулю 2 Операции сдвига

Слайд 39





Логическое суммирование
Обозначения: ИЛИ, OR, «V»
Выполняется над двумя кодами заданной разрядности и генерирует код той же разрядности.
Пример:
10001101 V 11110000 = ?
= 11111101(2)
Описание слайда:
Логическое суммирование Обозначения: ИЛИ, OR, «V» Выполняется над двумя кодами заданной разрядности и генерирует код той же разрядности. Пример: 10001101 V 11110000 = ? = 11111101(2)

Слайд 40





Логическое умножение
Обозначения: И, AND, «^»
Выполняется над двумя кодами заданной разрядности и генерирует код той же разрядности.
Пример:
10001101 ^ 11110000 = ?
= 10000000(2)
Описание слайда:
Логическое умножение Обозначения: И, AND, «^» Выполняется над двумя кодами заданной разрядности и генерирует код той же разрядности. Пример: 10001101 ^ 11110000 = ? = 10000000(2)

Слайд 41





Суммирование по модулю 2
Обозначения: mod 2, «»
Выполняется над двумя кодами заданной разрядности и генерирует код той же разрядности.
Пример:
10001101  11110000 = ?
= 01111101(2)
«Исключающее ИЛИ»
Описание слайда:
Суммирование по модулю 2 Обозначения: mod 2, «» Выполняется над двумя кодами заданной разрядности и генерирует код той же разрядности. Пример: 10001101  11110000 = ? = 01111101(2) «Исключающее ИЛИ»

Слайд 42





Логическое отрицание
Обозначения: НЕТ, NOT, «¬», «х»
Выполняется над одним кодом и генерирует результирующий код той же разрядности.
Пример:
¬(10001101) = NOT(10001101) = (10001101) = ?
= 01110010(2)
Описание слайда:
Логическое отрицание Обозначения: НЕТ, NOT, «¬», «х» Выполняется над одним кодом и генерирует результирующий код той же разрядности. Пример: ¬(10001101) = NOT(10001101) = (10001101) = ? = 01110010(2)

Слайд 43





Операции сдвига
Описание слайда:
Операции сдвига

Слайд 44





Логические сдвиги
Сдвиг влево выполняется за счет смещения значений разрядов от младшего к старшему, в самом младшем устанавливается 0, а «выталкиваемый» разряд пропадает.
Сдвиг вправо выполняется за счет смещения значений разрядов от старшего к младшему, самый старший разряд устанавливается в 0, а «выталкиваемый» разряд пропадает.
Примеры:
Код 11001110  после сдвига влево равен 10011100
Код 11001110  после сдвига вправо равен 01100111
Описание слайда:
Логические сдвиги Сдвиг влево выполняется за счет смещения значений разрядов от младшего к старшему, в самом младшем устанавливается 0, а «выталкиваемый» разряд пропадает. Сдвиг вправо выполняется за счет смещения значений разрядов от старшего к младшему, самый старший разряд устанавливается в 0, а «выталкиваемый» разряд пропадает. Примеры: Код 11001110 после сдвига влево равен 10011100 Код 11001110 после сдвига вправо равен 01100111

Слайд 45





Логические сдвиги
Циклический сдвиг влево выполняется за счет смещения значений разрядов от младшего к старшему, в самом младшем разряде устанавливается значение «выталкиваемого» разряда.
Сдвиг вправо выполняется за счет смещения значений разрядов от старшего к младшему, в самый старший разряд устанавливается «выталкиваемый» младший разряд.
Примеры:
Код 11001110  после цикл. сдвига влево равен 10011101
Код 11001110  после цикл. сдвига вправо равен 01100111
Описание слайда:
Логические сдвиги Циклический сдвиг влево выполняется за счет смещения значений разрядов от младшего к старшему, в самом младшем разряде устанавливается значение «выталкиваемого» разряда. Сдвиг вправо выполняется за счет смещения значений разрядов от старшего к младшему, в самый старший разряд устанавливается «выталкиваемый» младший разряд. Примеры: Код 11001110 после цикл. сдвига влево равен 10011101 Код 11001110 после цикл. сдвига вправо равен 01100111

Слайд 46


Арифметические основы компьютерной техники, слайд №46
Описание слайда:

Слайд 47





Арифметический сдвиг
Арифметические сдвиги обеспечивают выполнение умножения (сдвиги влево) или операции деления (сдвиги вправо) двоичных кодов на два. 
Аналогично, сдвиги десятичного числа обеспечивают выполнение деления или умножение на 10.
Описание слайда:
Арифметический сдвиг Арифметические сдвиги обеспечивают выполнение умножения (сдвиги влево) или операции деления (сдвиги вправо) двоичных кодов на два. Аналогично, сдвиги десятичного числа обеспечивают выполнение деления или умножение на 10.

Слайд 48






Арифметические сдвиги влево и вправо реализуются по-разному в зависимости как от знака числа, так и 
от используемого кода 
(прямого обратного, дополнительного).
Описание слайда:
Арифметические сдвиги влево и вправо реализуются по-разному в зависимости как от знака числа, так и от используемого кода (прямого обратного, дополнительного).

Слайд 49






Арифметические сдвиги влево положительных двоичных чисел выполняются 
независимо от используемого кода.
Арифметические сдвиги влево двоичного прямого кода выполняются в зависимости от того, какое сдвигается число – 
положительное или отрицательное.
Описание слайда:
Арифметические сдвиги влево положительных двоичных чисел выполняются независимо от используемого кода. Арифметические сдвиги влево двоичного прямого кода выполняются в зависимости от того, какое сдвигается число – положительное или отрицательное.

Слайд 50






Если сдвигается положительное число, то сдвиг (вправо или влево) выполняется как соответствующий логический сдвиг (влево или вправо), с той лишь разницей, что при сдвиге влево предусматриваются средства определения факта переполнения. 
При любом сдвиге вправо необходимо предусмотреть средства для округления после завершения нужного количества сдвигов и 
средства обнаружения обнуления сдвигаемой величины после очередного сдвига.
Описание слайда:
Если сдвигается положительное число, то сдвиг (вправо или влево) выполняется как соответствующий логический сдвиг (влево или вправо), с той лишь разницей, что при сдвиге влево предусматриваются средства определения факта переполнения. При любом сдвиге вправо необходимо предусмотреть средства для округления после завершения нужного количества сдвигов и средства обнаружения обнуления сдвигаемой величины после очередного сдвига.

Слайд 51





Примеры: 
Найти результат арифметического сдвига ...
… влево на три разряда двоичного прямого кода числа
 [А]пк = 00.00000101
первый сдвиг: 00.00000101 ← 00.00001010
второй сдвиг: 00.00001010 ← 00.00010100
третий сдвиг: 00.00010100 ← 00.00101000
… влево на четыре разряда двоичного прямого кода числа
 [А]пк = 00.00101
первый сдвиг: 00.00101 ← 00.01010
второй сдвиг: 00.01010 ← 00.10100
третий сдвиг: 00.10100 ← 01.01000
четвертый сдвиг ???
Описание слайда:
Примеры: Найти результат арифметического сдвига ... … влево на три разряда двоичного прямого кода числа [А]пк = 00.00000101 первый сдвиг: 00.00000101 ← 00.00001010 второй сдвиг: 00.00001010 ← 00.00010100 третий сдвиг: 00.00010100 ← 00.00101000 … влево на четыре разряда двоичного прямого кода числа [А]пк = 00.00101 первый сдвиг: 00.00101 ← 00.01010 второй сдвиг: 00.01010 ← 00.10100 третий сдвиг: 00.10100 ← 01.01000 четвертый сдвиг ???

Слайд 52





Примеры: 
Найти результат арифметического сдвига ...
… вправо на два разряда двоичного прямого кода числа [А]пк = 00.00000110

первый сдвиг:  00. 00000110 → 00. 00000011
второй сдвиг:   00. 00000011 → 00. 00000001  1
Результат выполнения заданного сдвига 
будет равен 00.00000010
Описание слайда:
Примеры: Найти результат арифметического сдвига ... … вправо на два разряда двоичного прямого кода числа [А]пк = 00.00000110 первый сдвиг: 00. 00000110 → 00. 00000011 второй сдвиг: 00. 00000011 → 00. 00000001 1 Результат выполнения заданного сдвига будет равен 00.00000010

Слайд 53





Примеры: 
Найти результат арифметического сдвига ...
… вправо на четыре разряда двоичного прямого кода числа [А]пк = 00.00000110
первый сдвиг: 00.00000110 → 00.00000011
второй сдвиг: 00.00000011 → 00.00000001
третий сдвиг: 00.00000001 → 00.00000000
Оставшиеся сдвиги могут не выполняться.
Описание слайда:
Примеры: Найти результат арифметического сдвига ... … вправо на четыре разряда двоичного прямого кода числа [А]пк = 00.00000110 первый сдвиг: 00.00000110 → 00.00000011 второй сдвиг: 00.00000011 → 00.00000001 третий сдвиг: 00.00000001 → 00.00000000 Оставшиеся сдвиги могут не выполняться.

Слайд 54





Арифметические сдвиги 
отрицательных двоичных чисел
Арифметический сдвиг вправо может выполняться над отрицательными числами с переполнением 
(в модифицированном прямом, обратном или дополнительном коде такие числа имеют в знаковом поле 10).
После сдвига в знаковом поле будет 11.
В старшем разряде устанавливается единица, если число представлено в прямом коде.
В старшем разряде устанавливается ноль, если число представлено в обратном или дополнительном коде.
Описание слайда:
Арифметические сдвиги отрицательных двоичных чисел Арифметический сдвиг вправо может выполняться над отрицательными числами с переполнением (в модифицированном прямом, обратном или дополнительном коде такие числа имеют в знаковом поле 10). После сдвига в знаковом поле будет 11. В старшем разряде устанавливается единица, если число представлено в прямом коде. В старшем разряде устанавливается ноль, если число представлено в обратном или дополнительном коде.

Слайд 55





Арифметические сдвиги отрицательных двоичных чисел в прямом коде
Арифметический сдвиг числа, 
в прямом коде, осуществляется как соответствующий сдвиг 
только модульного поля 
записи числа.
Описание слайда:
Арифметические сдвиги отрицательных двоичных чисел в прямом коде Арифметический сдвиг числа, в прямом коде, осуществляется как соответствующий сдвиг только модульного поля записи числа.

Слайд 56





Арифметические сдвиги отрицательных двоичных чисел в обратном коде
Арифметический  сдвиг ВЛЕВО – это
циклический сдвиг исходного кода 
с контролем за переполнением.
Арифметический сдвиг ВПРАВО – это 
сдвиг только модульной части записи числа с установкой единицы в освобождающийся разряд
с контролем за обнулением результата сдвига (появление единичных значений во всех разрядах) и округление результата 
(ПОСЛЕ выполнения заданного количества сдвигов).
Освобождающийся разряд заполняется единицей.
Описание слайда:
Арифметические сдвиги отрицательных двоичных чисел в обратном коде Арифметический сдвиг ВЛЕВО – это циклический сдвиг исходного кода с контролем за переполнением. Арифметический сдвиг ВПРАВО – это сдвиг только модульной части записи числа с установкой единицы в освобождающийся разряд с контролем за обнулением результата сдвига (появление единичных значений во всех разрядах) и округление результата (ПОСЛЕ выполнения заданного количества сдвигов). Освобождающийся разряд заполняется единицей.

Слайд 57





Арифметические сдвиги отрицательных двоичных чисел в дополнительном коде
Арифметический сдвиг ВЛЕВО – это 
логический сдвиг влево модуля исходного кода 
с контролем за переполнением.
Освобождающийся разряд заполняется нулем. 
Арифметический сдвиг ВПРАВО – это 
логический сдвиг вправо модуля исходного числа
с контролем за обнулением результата сдвига (появление единичных значений во всех разрядах).
Освобождающийся разряд заполняется единицей.
Описание слайда:
Арифметические сдвиги отрицательных двоичных чисел в дополнительном коде Арифметический сдвиг ВЛЕВО – это логический сдвиг влево модуля исходного кода с контролем за переполнением. Освобождающийся разряд заполняется нулем. Арифметический сдвиг ВПРАВО – это логический сдвиг вправо модуля исходного числа с контролем за обнулением результата сдвига (появление единичных значений во всех разрядах). Освобождающийся разряд заполняется единицей.

Слайд 58





Примеры:
Пример 1.	
Выполнить сдвиг вправо на 2 разряда числа [А]пк = 10.01000110  (А10 = –326).
Первый сдвиг: 10. 01000110 → 11.10100011 (–16310);
Второй сдвиг: 11.10100011 → 11.01010001 (–8110) и последний вытолкнутый разряд равен 1).
С учетом округления имеем окончательный результат: [А2]пк = 11.01010010.
Пример 2.	
Выполнить сдвиг вправо на 2 разряда числа [А]ок = 10.10111001 (А10 = –326).
Первый сдвиг: 10.10111001 → 11.01011100 (–16310);
Второй сдвиг: 11.01011100 → 11.10101110 (–8210).
Пример 3.	
Выполнить сдвиг вправо на 2 разряда число [А]дк = 10. 10111010 (А10 = –326).
Первый сдвиг: 10.10111010 → 11.01011101 (–16310);
Второй сдвиг: 11.01011101 → 11.10101110 (–8110) и последний вытолкнутый разряд равен 1).
С учетом округления имеем окончательный результат [А]дк = 11.10101111.
Описание слайда:
Примеры: Пример 1. Выполнить сдвиг вправо на 2 разряда числа [А]пк = 10.01000110 (А10 = –326). Первый сдвиг: 10. 01000110 → 11.10100011 (–16310); Второй сдвиг: 11.10100011 → 11.01010001 (–8110) и последний вытолкнутый разряд равен 1). С учетом округления имеем окончательный результат: [А2]пк = 11.01010010. Пример 2. Выполнить сдвиг вправо на 2 разряда числа [А]ок = 10.10111001 (А10 = –326). Первый сдвиг: 10.10111001 → 11.01011100 (–16310); Второй сдвиг: 11.01011100 → 11.10101110 (–8210). Пример 3. Выполнить сдвиг вправо на 2 разряда число [А]дк = 10. 10111010 (А10 = –326). Первый сдвиг: 10.10111010 → 11.01011101 (–16310); Второй сдвиг: 11.01011101 → 11.10101110 (–8110) и последний вытолкнутый разряд равен 1). С учетом округления имеем окончательный результат [А]дк = 11.10101111.

Слайд 59





Литература для самостоятельной работы
Гашков С.Б. Системы счисления и их применение. Серия: Библиотека «Математическое просвещение». // М.: МЦНМО, 2004. - 52 с.: ил.
Фомин С. В. Системы счисления. Серия «Популярные лекции по математике», выпуск 40. // М.: Наука, 1987. - 48 с.

ваш конспект !!!
Описание слайда:
Литература для самостоятельной работы Гашков С.Б. Системы счисления и их применение. Серия: Библиотека «Математическое просвещение». // М.: МЦНМО, 2004. - 52 с.: ил. Фомин С. В. Системы счисления. Серия «Популярные лекции по математике», выпуск 40. // М.: Наука, 1987. - 48 с. ваш конспект !!!



Похожие презентации
Mypresentation.ru
Загрузить презентацию