🗊Презентация Атомная физика

Категория: Физика
Нажмите для полного просмотра!
Атомная физика, слайд №1Атомная физика, слайд №2Атомная физика, слайд №3Атомная физика, слайд №4Атомная физика, слайд №5Атомная физика, слайд №6Атомная физика, слайд №7Атомная физика, слайд №8Атомная физика, слайд №9Атомная физика, слайд №10Атомная физика, слайд №11Атомная физика, слайд №12Атомная физика, слайд №13

Вы можете ознакомиться и скачать презентацию на тему Атомная физика. Доклад-сообщение содержит 13 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Презентация на тему: Атомная физика
Выполнил: студент РТ-11 Ажгалиев Дамир
Описание слайда:
Презентация на тему: Атомная физика Выполнил: студент РТ-11 Ажгалиев Дамир

Слайд 2





Атом
Атом состоит из атомного ядра и электронов. Электрон – это частица, заряд которой отрицателен и равен по модулю элементарному заряду e = 1,6·10 –19 Кл, а масса m e = 9,1·10 –31 кг. Согласно планетарной модели Бора – Резерфорда электроны обращаются вокруг атомного ядра по различным орбитам. 
Описание слайда:
Атом Атом состоит из атомного ядра и электронов. Электрон – это частица, заряд которой отрицателен и равен по модулю элементарному заряду e = 1,6·10 –19 Кл, а масса m e = 9,1·10 –31 кг. Согласно планетарной модели Бора – Резерфорда электроны обращаются вокруг атомного ядра по различным орбитам. 

Слайд 3





Модель атома по Томсону
Описание слайда:
Модель атома по Томсону

Слайд 4





Опыты Резерфорда 
Планетарная модель
Атомное ядро заряжено положительно. Его диаметр не превышает 10 –14 –10 –15 м, а заряд q равен произведению элементарного заряда на порядковый номер атома Z: q = Z·e. Явление радиоактивности, а также опыты Резерфорда показали, что атомное ядро состоит из протонов и нейтронов, удерживаемых вместе ядерными силами. Протоны и нейтроны носят общее название нуклонов. 
Описание слайда:
Опыты Резерфорда Планетарная модель Атомное ядро заряжено положительно. Его диаметр не превышает 10 –14 –10 –15 м, а заряд q равен произведению элементарного заряда на порядковый номер атома Z: q = Z·e. Явление радиоактивности, а также опыты Резерфорда показали, что атомное ядро состоит из протонов и нейтронов, удерживаемых вместе ядерными силами. Протоны и нейтроны носят общее название нуклонов. 

Слайд 5





Опыт Резерфорда
Описание слайда:
Опыт Резерфорда

Слайд 6





Опыт Резерфорда
Описание слайда:
Опыт Резерфорда

Слайд 7





Планетарная модель
Описание слайда:
Планетарная модель

Слайд 8





Современная модель атома водорода
Описание слайда:
Современная модель атома водорода

Слайд 9





Формула связи частиц в атоме
Описание слайда:
Формула связи частиц в атоме

Слайд 10





Квантовые постулаты бора. Модель атома водорода по бору. 
Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Эта попытка оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на ядро, растратив всю энергию на излучение электромагнитных волн
Описание слайда:
Квантовые постулаты бора. Модель атома водорода по бору. Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Эта попытка оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на ядро, растратив всю энергию на излучение электромагнитных волн

Слайд 11





Постулаты Бора
Следующий шаг в развитии представлений об устройстве атома сделал в 1913 году выдающийся датский физик Нильс Бор. Проанализировав всю совокупность опытных фактов, Бор пришел к выводу, что при описании поведения атомных систем следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять новая теория о строении атомов. 
Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает. 
Второй постулат Бора (правило частот) формулируется следующим образом: при переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний: hνnm = En – Em, где h – постоянная Планка
Описание слайда:
Постулаты Бора Следующий шаг в развитии представлений об устройстве атома сделал в 1913 году выдающийся датский физик Нильс Бор. Проанализировав всю совокупность опытных фактов, Бор пришел к выводу, что при описании поведения атомных систем следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять новая теория о строении атомов. Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает. Второй постулат Бора (правило частот) формулируется следующим образом: при переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний: hνnm = En – Em, где h – постоянная Планка

Слайд 12





Модель постулаты Бора
Описание слайда:
Модель постулаты Бора

Слайд 13





Трудности теории Бора.
Квантовая механика.
Теория Бора является половинчатой, внутренне противоречивой. С Одной стороны, при построении теории атома водорода использовались обычные законы механики Ньютона и давно известный закон Кулона, а с другой стороны- вводились квантовые постулаты, никак не связанные с механикой Ньютона и электродинамикой Максвелла. Введение в физику квантовых представлений требовало радикальной перестройки как механики, так и электродинамики. В итоге были созданы новые физические теории: квантовая механика и квантовая электродинамика. Постулаты Бора оказались совершенно правильными. Но правило же квантования Бора, как выяснилось, применимо не всегда. Теория Бора является половинчатой, внутренне противоречивой. С Одной стороны, при построении теории атома водорода использовались обычные законы механики Ньютона и давно известный закон Кулона, а с другой стороны- вводились квантовые постулаты, никак не связанные с механикой Ньютона и электродинамикой Максвелла. Введение в физику квантовых представлений требовало радикальной перестройки как механики, так и электродинамики. В итоге были созданы новые физические теории: квантовая механика и квантовая электродинамика. Постулаты Бора оказались совершенно правильными. Но правило же квантования Бора, как выяснилось, применимо не всегда. 
Описание слайда:
Трудности теории Бора. Квантовая механика. Теория Бора является половинчатой, внутренне противоречивой. С Одной стороны, при построении теории атома водорода использовались обычные законы механики Ньютона и давно известный закон Кулона, а с другой стороны- вводились квантовые постулаты, никак не связанные с механикой Ньютона и электродинамикой Максвелла. Введение в физику квантовых представлений требовало радикальной перестройки как механики, так и электродинамики. В итоге были созданы новые физические теории: квантовая механика и квантовая электродинамика. Постулаты Бора оказались совершенно правильными. Но правило же квантования Бора, как выяснилось, применимо не всегда. Теория Бора является половинчатой, внутренне противоречивой. С Одной стороны, при построении теории атома водорода использовались обычные законы механики Ньютона и давно известный закон Кулона, а с другой стороны- вводились квантовые постулаты, никак не связанные с механикой Ньютона и электродинамикой Максвелла. Введение в физику квантовых представлений требовало радикальной перестройки как механики, так и электродинамики. В итоге были созданы новые физические теории: квантовая механика и квантовая электродинамика. Постулаты Бора оказались совершенно правильными. Но правило же квантования Бора, как выяснилось, применимо не всегда. 



Похожие презентации
Mypresentation.ru
Загрузить презентацию