🗊Презентация Часы. Измерение времени

Категория: Машиностроение
Нажмите для полного просмотра!
Часы. Измерение времени, слайд №1Часы. Измерение времени, слайд №2Часы. Измерение времени, слайд №3Часы. Измерение времени, слайд №4Часы. Измерение времени, слайд №5Часы. Измерение времени, слайд №6Часы. Измерение времени, слайд №7Часы. Измерение времени, слайд №8Часы. Измерение времени, слайд №9Часы. Измерение времени, слайд №10Часы. Измерение времени, слайд №11Часы. Измерение времени, слайд №12Часы. Измерение времени, слайд №13Часы. Измерение времени, слайд №14Часы. Измерение времени, слайд №15Часы. Измерение времени, слайд №16

Вы можете ознакомиться и скачать презентацию на тему Часы. Измерение времени. Доклад-сообщение содержит 16 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





ЧАСЫ
Подготовил:  Студент IV курса 
группы 401
 С. А. Бузовский
Описание слайда:
ЧАСЫ Подготовил: Студент IV курса группы 401 С. А. Бузовский

Слайд 2





А для чего же нам они нужны?
Пожалуй важнейшим вопросом для древнего человека был вопрос времени. Перейдя к оседлому образу жизни, он начал выращивать различные агрикультуры. И естественно перед ним встал вопрос: «А через сколько его посевы взойдут?». 
Первые примитивные понятия для измерения времени (сутки, утро, день, полдень, вечер, ночь) древним людям подсознательно подсказала регулярная смена времени года, смена дня и ночи, перемещение Солнца и Луны по небесному своду.
Описание слайда:
А для чего же нам они нужны? Пожалуй важнейшим вопросом для древнего человека был вопрос времени. Перейдя к оседлому образу жизни, он начал выращивать различные агрикультуры. И естественно перед ним встал вопрос: «А через сколько его посевы взойдут?». Первые примитивные понятия для измерения времени (сутки, утро, день, полдень, вечер, ночь) древним людям подсознательно подсказала регулярная смена времени года, смена дня и ночи, перемещение Солнца и Луны по небесному своду.

Слайд 3





Первые прообразы хронометража
Долгое время человек использовал календарным измерением времени, подсчитывая количество истекших или предстоящих суток. Примитивными приспособлениями для отсчета времени были ремешок с узелками и дощечка с зарубками. Ежесуточно делая зарубку, человек мог подсчитать количество прошедших дней; развязывая каждый день по узелку, можно было определить число оставшихся суток до какого либо ожидаемого события.
Описание слайда:
Первые прообразы хронометража Долгое время человек использовал календарным измерением времени, подсчитывая количество истекших или предстоящих суток. Примитивными приспособлениями для отсчета времени были ремешок с узелками и дощечка с зарубками. Ежесуточно делая зарубку, человек мог подсчитать количество прошедших дней; развязывая каждый день по узелку, можно было определить число оставшихся суток до какого либо ожидаемого события.

Слайд 4





Использование природных ресурсов для измерения времени
С древних времен смена дня и ночи(сутки) служили единицей измерения относительно небольших интервалов времени. Положение Солнца на небе использовалось в качестве той часовой стрелки, по которой люди определяли время в дневную часть суток. Именно движение солнца легло в основу солнечных часов, которые появились примерно 5,5 тысяч лет назад. Принцип действия солнечных часов основан на движении тени, отбрасываемой неподвижным ориентиром в течение дня. Солнечные часы (Гномон) состоят из указателя, отбрасывающего тень и играющего роль стрелки, а так же циферблата с нанесенными на него делениями, обозначающими часы суток. Перемещение стрелки-тени, отражающей суточное вращение Земли, позволяет определять время.
Описание слайда:
Использование природных ресурсов для измерения времени С древних времен смена дня и ночи(сутки) служили единицей измерения относительно небольших интервалов времени. Положение Солнца на небе использовалось в качестве той часовой стрелки, по которой люди определяли время в дневную часть суток. Именно движение солнца легло в основу солнечных часов, которые появились примерно 5,5 тысяч лет назад. Принцип действия солнечных часов основан на движении тени, отбрасываемой неподвижным ориентиром в течение дня. Солнечные часы (Гномон) состоят из указателя, отбрасывающего тень и играющего роль стрелки, а так же циферблата с нанесенными на него делениями, обозначающими часы суток. Перемещение стрелки-тени, отражающей суточное вращение Земли, позволяет определять время.

Слайд 5





От природы к механизмам
Механические часы, по своему устройству напоминающие современные, появились в 14 веке в Европе. Это часы использующие гиревой или пружинный источник энергии, а в качестве колебательной системы у них применяется маятниковый или балансовый регулятор. Можно выделить шесть основных компонентов часового механизма:
1) двигатель;
2) передаточный механизм из зубчатых колес;
3) регулятор, создающий равномерное движение;
4) спусковой распределитель;
5) стрелочный механизм;
6) механизм перевода и заводки часов.
Первые механические часы называли башенными колесными часами, в движение они приводились опускающимся грузом. Приводной механизм представлял собой гладкий деревянный вал канатом к которому был примотан камень, выполняющий функцию гири. Под действием силы тяжести гири, канат начинал разматываться и вращать вал. Если этот вал через промежуточные колеса соединить с основным храповым колесом, связанным со стрелками-указателями, то вся эта система будет как-то указывать время. Проблемы подобного механизма в огромной тяжеловесности и необходимости гире куда-то падать и в не равномерном, а ускоренном вращении вала. Чтобы удовлетворить все необходимые условия, для работы механизма строили сооружения огромных размеров, как правило, в виде башни, высота которой была не ниже 10 метров, а вес гири достигал 200 кг, естественно все детали механизма были внушительных размеров.
Описание слайда:
От природы к механизмам Механические часы, по своему устройству напоминающие современные, появились в 14 веке в Европе. Это часы использующие гиревой или пружинный источник энергии, а в качестве колебательной системы у них применяется маятниковый или балансовый регулятор. Можно выделить шесть основных компонентов часового механизма: 1) двигатель; 2) передаточный механизм из зубчатых колес; 3) регулятор, создающий равномерное движение; 4) спусковой распределитель; 5) стрелочный механизм; 6) механизм перевода и заводки часов. Первые механические часы называли башенными колесными часами, в движение они приводились опускающимся грузом. Приводной механизм представлял собой гладкий деревянный вал канатом к которому был примотан камень, выполняющий функцию гири. Под действием силы тяжести гири, канат начинал разматываться и вращать вал. Если этот вал через промежуточные колеса соединить с основным храповым колесом, связанным со стрелками-указателями, то вся эта система будет как-то указывать время. Проблемы подобного механизма в огромной тяжеловесности и необходимости гире куда-то падать и в не равномерном, а ускоренном вращении вала. Чтобы удовлетворить все необходимые условия, для работы механизма строили сооружения огромных размеров, как правило, в виде башни, высота которой была не ниже 10 метров, а вес гири достигал 200 кг, естественно все детали механизма были внушительных размеров.

Слайд 6





От природы к механизмам
Столкнувшись с проблемой неравномерности вращения вала, средневековые механики поняли, что ход часов не может зависеть только от движения груза. Механизм необходимо дополнить устройством, которое управляло бы движением всего механизма. Так появилось устройство сдерживающее вращение колеса, его назвали "Билянец"  Он представлял собой металлический стержень, расположенный параллельно поверхности храпового колеса. К оси билянца под прямым углом друг к другу прикреплены две лопатки. При повороте колеса зубец толкает лопатку до тех пор, пока она не соскользнет с него и не отпустит колесо. В это время другая лопатка с противоположной стороны колеса входит в углубление между зубцами и сдерживает его движение. Работая, билянец раскачивается. При каждом полном его качании храповое колесо передвигается на один зубец. Скорость качание билянца, взаимосвязана со скоростью движется храпового колеса. На стержень билянца навешивают грузы, обычно в форме шаров. Регулируя величину этих грузов и расстояние их от оси, можно заставить храповое колесо двигаться с различной скоростью. Конечно, эта колебательная система во многих отношениях уступает маятнику, но может использоваться в часах. Однако, любой регулятор остановится если постоянно не поддерживать его колебания. Для работы часов необходимо, чтобы часть двигательной энергии от главного колеса постоянно поступала к маятнику или билянцу. Эту задачу в часах выполняет устройство, которое называется спусковым распределителем.
Описание слайда:
От природы к механизмам Столкнувшись с проблемой неравномерности вращения вала, средневековые механики поняли, что ход часов не может зависеть только от движения груза. Механизм необходимо дополнить устройством, которое управляло бы движением всего механизма. Так появилось устройство сдерживающее вращение колеса, его назвали "Билянец" Он представлял собой металлический стержень, расположенный параллельно поверхности храпового колеса. К оси билянца под прямым углом друг к другу прикреплены две лопатки. При повороте колеса зубец толкает лопатку до тех пор, пока она не соскользнет с него и не отпустит колесо. В это время другая лопатка с противоположной стороны колеса входит в углубление между зубцами и сдерживает его движение. Работая, билянец раскачивается. При каждом полном его качании храповое колесо передвигается на один зубец. Скорость качание билянца, взаимосвязана со скоростью движется храпового колеса. На стержень билянца навешивают грузы, обычно в форме шаров. Регулируя величину этих грузов и расстояние их от оси, можно заставить храповое колесо двигаться с различной скоростью. Конечно, эта колебательная система во многих отношениях уступает маятнику, но может использоваться в часах. Однако, любой регулятор остановится если постоянно не поддерживать его колебания. Для работы часов необходимо, чтобы часть двигательной энергии от главного колеса постоянно поступала к маятнику или билянцу. Эту задачу в часах выполняет устройство, которое называется спусковым распределителем.

Слайд 7





От природы к механизмам
Спусковой механизм самый сложный узел в механических часах. Через него осуществляется связь между регулятором и передаточным механизмом. Точный ход часов зависит главным образом от спускового механизма, конструкция которого озадачила изобретателей.
Самый первый спусковой механизм был шпиндельный. Регулятором хода этих часов был так называемый шпиндель, представляющий собой коромысло с тяжелыми грузами, установленное на вертикальной оси и приводимое попеременно то в правое, то в левое вращение. Инерция грузов оказывала тормозящее воздействие на часовой механизм, замедляя вращение его колес. Точность хода подобных часов со шпиндельным регулятором была низка, а суточная погрешность превышала 60 минут.
Так как в первых часах не было специального механизма заводки, подготовка часов к работе требовала больших усилий. Несколько раз в день нужно было поднимать на большую высоту тяжелую гирю и преодолевать огромное сопротивление всех зубчатых колес передаточного механизма. Поэтому уже во второй половине XIV века главное колесо стали крепить таким образом, что при обратном вращении вала (против часовой стрелки) оно оставалось неподвижным. Со временем устройство механических часов становилось сложнее. Увеличилось число колес передаточного механизма т.к. механизм испытывал сильную нагрузку и быстро изнашивался, а груз опускался очень быстро и его приходилось поднимать по несколько раз на день.
Описание слайда:
От природы к механизмам Спусковой механизм самый сложный узел в механических часах. Через него осуществляется связь между регулятором и передаточным механизмом. Точный ход часов зависит главным образом от спускового механизма, конструкция которого озадачила изобретателей. Самый первый спусковой механизм был шпиндельный. Регулятором хода этих часов был так называемый шпиндель, представляющий собой коромысло с тяжелыми грузами, установленное на вертикальной оси и приводимое попеременно то в правое, то в левое вращение. Инерция грузов оказывала тормозящее воздействие на часовой механизм, замедляя вращение его колес. Точность хода подобных часов со шпиндельным регулятором была низка, а суточная погрешность превышала 60 минут. Так как в первых часах не было специального механизма заводки, подготовка часов к работе требовала больших усилий. Несколько раз в день нужно было поднимать на большую высоту тяжелую гирю и преодолевать огромное сопротивление всех зубчатых колес передаточного механизма. Поэтому уже во второй половине XIV века главное колесо стали крепить таким образом, что при обратном вращении вала (против часовой стрелки) оно оставалось неподвижным. Со временем устройство механических часов становилось сложнее. Увеличилось число колес передаточного механизма т.к. механизм испытывал сильную нагрузку и быстро изнашивался, а груз опускался очень быстро и его приходилось поднимать по несколько раз на день.

Слайд 8





От природы к механизмам
После колесных часов появились более усовершенствованные пружинные часы. Первые упоминания об изготовлении часов с пружинным двигателем относят ко второй половине 15 века. Изготовление часов с пружинным двигателем открыло путь к созданию миниатюрных часов. Источником движущей энергии в пружинных часах служила заведенная и стремящаяся развернуться пружина. Она представляла собой эластичную, закаленную стальную ленту, свернутую вокруг вала внутри барабана.
Пружина стремилась развернуться и приводила во вращение барабан и связанное с ним зубчатое колесо. Зубчатое колесо в свою очередь передавало это движение системе зубчатых колес до регулятора включительно.
Описание слайда:
От природы к механизмам После колесных часов появились более усовершенствованные пружинные часы. Первые упоминания об изготовлении часов с пружинным двигателем относят ко второй половине 15 века. Изготовление часов с пружинным двигателем открыло путь к созданию миниатюрных часов. Источником движущей энергии в пружинных часах служила заведенная и стремящаяся развернуться пружина. Она представляла собой эластичную, закаленную стальную ленту, свернутую вокруг вала внутри барабана. Пружина стремилась развернуться и приводила во вращение барабан и связанное с ним зубчатое колесо. Зубчатое колесо в свою очередь передавало это движение системе зубчатых колес до регулятора включительно.

Слайд 9





От природы к механизмам
Для дальнейшего усовершенствования часов огромное значение имело открытие законов колебания маятника, сделанное Галилеем, которому пришла в голову идея создания механических маятниковых часов. Реальная конструкция таких часов появилась в 1658 году благодаря талантливому голландскому изобретателю и ученому Христиану Гюйгенсу (1629-1695гг). Он же изобрел балансовый регулятор, позволивший создать карманные и наручные часы. 
Создание маятниковых часов состояло в соединении маятника с устройством для поддержания его колебаний и их отсчета. Фактически, маятниковые часы — это усовершенствованные пружинные часы.
Описание слайда:
От природы к механизмам Для дальнейшего усовершенствования часов огромное значение имело открытие законов колебания маятника, сделанное Галилеем, которому пришла в голову идея создания механических маятниковых часов. Реальная конструкция таких часов появилась в 1658 году благодаря талантливому голландскому изобретателю и ученому Христиану Гюйгенсу (1629-1695гг). Он же изобрел балансовый регулятор, позволивший создать карманные и наручные часы. Создание маятниковых часов состояло в соединении маятника с устройством для поддержания его колебаний и их отсчета. Фактически, маятниковые часы — это усовершенствованные пружинные часы.

Слайд 10





От природы к механизмам
В 1676 году Клемент, английский часовщик изобрел якорно-анкерный спуск, который идеально подходил к маятниковым часам, имевшим небольшую амплитуду колебания. Эта конструкция спуска представляла собой ось маятника на которую насаживался якорь с палетами. Раскачиваясь вместе с маятником, палеты попеременно внедрялись в ходовое колесо, подчиняя его вращение периоду колебания маятника. Колесо успевало повернуться на один зуб при каждом колебании.
Описание слайда:
От природы к механизмам В 1676 году Клемент, английский часовщик изобрел якорно-анкерный спуск, который идеально подходил к маятниковым часам, имевшим небольшую амплитуду колебания. Эта конструкция спуска представляла собой ось маятника на которую насаживался якорь с палетами. Раскачиваясь вместе с маятником, палеты попеременно внедрялись в ходовое колесо, подчиняя его вращение периоду колебания маятника. Колесо успевало повернуться на один зуб при каждом колебании.

Слайд 11





От природы к механизмам
Англичанин Роберт Гук независимо от голландца Христиана Гюйгенса также разработал колебательный механизм, который основан на колебаниях подпружиненого тела — балансирный механизм. Балансирный механизм применяется, как правило, в переносных часах, так как может эксплуатироваться в разных положениях, чего не скажешь об маятниковом механизме, который используют в настенных и напольных часах т. к. для него важна неподвижность.
Описание слайда:
От природы к механизмам Англичанин Роберт Гук независимо от голландца Христиана Гюйгенса также разработал колебательный механизм, который основан на колебаниях подпружиненого тела — балансирный механизм. Балансирный механизм применяется, как правило, в переносных часах, так как может эксплуатироваться в разных положениях, чего не скажешь об маятниковом механизме, который используют в настенных и напольных часах т. к. для него важна неподвижность.

Слайд 12





От природы к механизмам
Величайшим достижением в часовой промышленности и теперь считается изобретение в 1801 году Авраамом Луи Бреге турбийона. Бреге удалась решить одну из самых больших проблем часовых механизмов его времени, он нашел способ побороть гравитацию и связанные с ней погрешности хода. Турбийон - это механическое устройство, созданное для повышения точности хода часов за счет компенсации влияния гравитации на анкерную вилку, и равномерного распределения смазки трущихся поверхностей механизма при смене вертикальных и горизонтальных положений механизма.
Описание слайда:
От природы к механизмам Величайшим достижением в часовой промышленности и теперь считается изобретение в 1801 году Авраамом Луи Бреге турбийона. Бреге удалась решить одну из самых больших проблем часовых механизмов его времени, он нашел способ побороть гравитацию и связанные с ней погрешности хода. Турбийон - это механическое устройство, созданное для повышения точности хода часов за счет компенсации влияния гравитации на анкерную вилку, и равномерного распределения смазки трущихся поверхностей механизма при смене вертикальных и горизонтальных положений механизма.

Слайд 13





От меридиана к меридиану. Часовые пояса
Вплоть до XIX в. определение времени в каждом населённом пункте определялось местным солнечным временем (Когда Солнце находилось в зените – наступал полдень). С массовым распространением ж/д транспорта проблема «разнобоя» стала весьма острой. Ведь даже между весьма близкими городами разница могла составлять 15 минут.
Описание слайда:
От меридиана к меридиану. Часовые пояса Вплоть до XIX в. определение времени в каждом населённом пункте определялось местным солнечным временем (Когда Солнце находилось в зените – наступал полдень). С массовым распространением ж/д транспорта проблема «разнобоя» стала весьма острой. Ведь даже между весьма близкими городами разница могла составлять 15 минут.

Слайд 14





«XX век – даешь новые часы» Атомные часы 
ХХ столетие можно смело назвать «Веком Атома».  Не обошел он и часовое дело…
Описание слайда:
«XX век – даешь новые часы» Атомные часы ХХ столетие можно смело назвать «Веком Атома». Не обошел он и часовое дело…

Слайд 15





Список литературы
Описание слайда:
Список литературы

Слайд 16





Спасибо за внимание
Описание слайда:
Спасибо за внимание



Похожие презентации
Mypresentation.ru
Загрузить презентацию