🗊Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине

Категория: Физика
Нажмите для полного просмотра!
Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №1Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №2Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №3Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №4Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №5Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №6Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №7Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №8

Вы можете ознакомиться и скачать Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине. Презентация содержит 8 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1






Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными.
Описание слайда:
Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными.

Слайд 2





Пусть имеются две системы отсчета. Система XOY условно считается неподвижной, а система X'O'Y' движется поступательно по отношению к системе XOY со скоростью Система XOY может быть, например, связана с Землей, а система X'O'Y' – с движущейся по рельсам платформой (рис. 1.2.1).
Пусть имеются две системы отсчета. Система XOY условно считается неподвижной, а система X'O'Y' движется поступательно по отношению к системе XOY со скоростью Система XOY может быть, например, связана с Землей, а система X'O'Y' – с движущейся по рельсам платформой (рис. 1.2.1).
Рисунок 1.2.1. Сложение перемещений относительно разных систем отсчета. 
Пусть человек перешел по платформе за некоторое время из точки A в точку B. Тогда его перемещение относительно платформы соответствует вектору а перемещение платформы относительно Земли соответствует вектору Из рис. 1.2.1 видно, что перемещение человека относительно Земли будет соответствовать вектору представляющему собой сумму векторов и 

В случае, когда одна из систем отсчета движется относительно другой поступательно (как на рис. 1.2.1) с постоянной скоростью это выражение принимает вид: 

Если рассмотреть перемещение за малый промежуток времени Δt, то, разделив обе части этого уравнения на Δt и затем перейдя к пределу при Δt → 0 получим: 
(*) 
Здесь – скорость тела в «неподвижной» системе отсчета XOY, – скорость тела в «движущейся» системе отсчета X'O'Y'. Скорости и иногда условно называют абсолютной и относительной скоростями; скорость называют переносной скоростью.
Соотношение (*) выражает классический закон сложения скоростей:
Описание слайда:
Пусть имеются две системы отсчета. Система XOY условно считается неподвижной, а система X'O'Y' движется поступательно по отношению к системе XOY со скоростью Система XOY может быть, например, связана с Землей, а система X'O'Y' – с движущейся по рельсам платформой (рис. 1.2.1). Пусть имеются две системы отсчета. Система XOY условно считается неподвижной, а система X'O'Y' движется поступательно по отношению к системе XOY со скоростью Система XOY может быть, например, связана с Землей, а система X'O'Y' – с движущейся по рельсам платформой (рис. 1.2.1). Рисунок 1.2.1. Сложение перемещений относительно разных систем отсчета. Пусть человек перешел по платформе за некоторое время из точки A в точку B. Тогда его перемещение относительно платформы соответствует вектору а перемещение платформы относительно Земли соответствует вектору Из рис. 1.2.1 видно, что перемещение человека относительно Земли будет соответствовать вектору представляющему собой сумму векторов и В случае, когда одна из систем отсчета движется относительно другой поступательно (как на рис. 1.2.1) с постоянной скоростью это выражение принимает вид: Если рассмотреть перемещение за малый промежуток времени Δt, то, разделив обе части этого уравнения на Δt и затем перейдя к пределу при Δt → 0 получим: (*) Здесь – скорость тела в «неподвижной» системе отсчета XOY, – скорость тела в «движущейся» системе отсчета X'O'Y'. Скорости и иногда условно называют абсолютной и относительной скоростями; скорость называют переносной скоростью. Соотношение (*) выражает классический закон сложения скоростей:

Слайд 3


Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кине, слайд №3
Описание слайда:

Слайд 4





Абсолютная скорость тела равна векторной сумме его относительной скорости и переносной скорости подвижной системы отсчета.
Абсолютная скорость тела равна векторной сумме его относительной скорости и переносной скорости подвижной системы отсчета.
                                                               Модель.                                                                
                                                      Относительность                                   
                                                            движения.
Описание слайда:
Абсолютная скорость тела равна векторной сумме его относительной скорости и переносной скорости подвижной системы отсчета. Абсолютная скорость тела равна векторной сумме его относительной скорости и переносной скорости подвижной системы отсчета. Модель. Относительность движения.

Слайд 5





Следует обратить внимание на вопрос об ускорениях тела в различных системах отсчета. Из (*) следует, что при равномерном и прямолинейном движении систем отсчета друг относительно друга ускорения тела в этих двух системах одинаковы, т. е.                Действительно, если      – вектор, модуль и направление которого остаются неизменными во времени, то любое изменение     относительной скорости тела будет совпадать с изменением        его абсолютной скорости. Следовательно, Переходя к пределу (Δt → 0), получим 

Следует обратить внимание на вопрос об ускорениях тела в различных системах отсчета. Из (*) следует, что при равномерном и прямолинейном движении систем отсчета друг относительно друга ускорения тела в этих двух системах одинаковы, т. е.                Действительно, если      – вектор, модуль и направление которого остаются неизменными во времени, то любое изменение     относительной скорости тела будет совпадать с изменением        его абсолютной скорости. Следовательно, Переходя к пределу (Δt → 0), получим
Описание слайда:
Следует обратить внимание на вопрос об ускорениях тела в различных системах отсчета. Из (*) следует, что при равномерном и прямолинейном движении систем отсчета друг относительно друга ускорения тела в этих двух системах одинаковы, т. е. Действительно, если – вектор, модуль и направление которого остаются неизменными во времени, то любое изменение относительной скорости тела будет совпадать с изменением его абсолютной скорости. Следовательно, Переходя к пределу (Δt → 0), получим Следует обратить внимание на вопрос об ускорениях тела в различных системах отсчета. Из (*) следует, что при равномерном и прямолинейном движении систем отсчета друг относительно друга ускорения тела в этих двух системах одинаковы, т. е. Действительно, если – вектор, модуль и направление которого остаются неизменными во времени, то любое изменение относительной скорости тела будет совпадать с изменением его абсолютной скорости. Следовательно, Переходя к пределу (Δt → 0), получим

Слайд 6





В общем случае, при движениях систем отсчета с ускорением друг относительно друга, ускорения тела в различных системах отсчета оказываются различными.
В общем случае, при движениях систем отсчета с ускорением друг относительно друга, ускорения тела в различных системах отсчета оказываются различными.
В случае, когда вектора относительной скорости      и переносной скорости      параллельны друг другу, закон сложения скоростей можно записать в скалярной форме: 
                                 υ = υ0 + υ'. 
В этом случае все движения происходят вдоль одной прямой линии (например, оси OX). Скорости υ, υ0 и υ' нужно рассматривать как проекции абсолютной, переносной и относительной скоростей на ось OX. Они являются величинами алгебраическими и, следовательно, им нужно приписывать определенные знаки (плюс или минус) в зависимости от направления движения.
Описание слайда:
В общем случае, при движениях систем отсчета с ускорением друг относительно друга, ускорения тела в различных системах отсчета оказываются различными. В общем случае, при движениях систем отсчета с ускорением друг относительно друга, ускорения тела в различных системах отсчета оказываются различными. В случае, когда вектора относительной скорости и переносной скорости параллельны друг другу, закон сложения скоростей можно записать в скалярной форме: υ = υ0 + υ'. В этом случае все движения происходят вдоль одной прямой линии (например, оси OX). Скорости υ, υ0 и υ' нужно рассматривать как проекции абсолютной, переносной и относительной скоростей на ось OX. Они являются величинами алгебраическими и, следовательно, им нужно приписывать определенные знаки (плюс или минус) в зависимости от направления движения.

Слайд 7





Легковой автомобиль движется со скоростью 20 м/с за грузовым, скорость которого 16,5 м/с. В момент начала обгона водитель легкового автомобиля увидел встречный международный автобус, движущийся со скоростью 25 м/с. При каком наименьшем расстоянии до автобуса можно начинать обгон, если в начале обгона легковая машина была в 15 м от грузовой, а к концу обгона она должна быть впереди на 20 м?
Легковой автомобиль движется со скоростью 20 м/с за грузовым, скорость которого 16,5 м/с. В момент начала обгона водитель легкового автомобиля увидел встречный международный автобус, движущийся со скоростью 25 м/с. При каком наименьшем расстоянии до автобуса можно начинать обгон, если в начале обгона легковая машина была в 15 м от грузовой, а к концу обгона она должна быть впереди на 20 м?







Решение. Задача решается на основе принципа относительности Галилея. Решим её в два приёма, рассматривая движение легкового автомобиля: 1) в системе отсчёта «грузовик», причём движение автобуса рассматривать не будем совсем; 2) в системе отсчёта «автобус», а движение грузовика рассматривать не будем.
Описание слайда:
Легковой автомобиль движется со скоростью 20 м/с за грузовым, скорость которого 16,5 м/с. В момент начала обгона водитель легкового автомобиля увидел встречный международный автобус, движущийся со скоростью 25 м/с. При каком наименьшем расстоянии до автобуса можно начинать обгон, если в начале обгона легковая машина была в 15 м от грузовой, а к концу обгона она должна быть впереди на 20 м? Легковой автомобиль движется со скоростью 20 м/с за грузовым, скорость которого 16,5 м/с. В момент начала обгона водитель легкового автомобиля увидел встречный международный автобус, движущийся со скоростью 25 м/с. При каком наименьшем расстоянии до автобуса можно начинать обгон, если в начале обгона легковая машина была в 15 м от грузовой, а к концу обгона она должна быть впереди на 20 м? Решение. Задача решается на основе принципа относительности Галилея. Решим её в два приёма, рассматривая движение легкового автомобиля: 1) в системе отсчёта «грузовик», причём движение автобуса рассматривать не будем совсем; 2) в системе отсчёта «автобус», а движение грузовика рассматривать не будем.

Слайд 8





1. Для определённости за положительное направление примем направление движения легкового автомобиля и грузовика. Тогда в системе «грузовик» легковая машина будет двигаться относительно грузовика со скоростью лг = л – г. С этой скоростью ей придётся проехать расстояние s до грузовика и расстояние l (которое из соображений безопасности оговаривается правилами дорожного движения [5]), чтобы оказаться перед грузовиком. На прохождение расстояния s + l потребуется время 
1. Для определённости за положительное направление примем направление движения легкового автомобиля и грузовика. Тогда в системе «грузовик» легковая машина будет двигаться относительно грузовика со скоростью лг = л – г. С этой скоростью ей придётся проехать расстояние s до грузовика и расстояние l (которое из соображений безопасности оговаривается правилами дорожного движения [5]), чтобы оказаться перед грузовиком. На прохождение расстояния s + l потребуется время 
.         (4)
2. Рассмотрим движение легкового автомобиля в относительной системе отсчёта «автобус». В ней скорость легковой машины относительно автобуса ла =|л – а| = л + а. Пусть первоначальное расстояние между легковым автомобилем и автобусом L. Его автомобиль пройдёт за время:
         (5)
3. Обгон считается безопасным, если легковой автомобиль в конце обгона окажется на 20 м впереди грузовика, не доехав при этом до автобуса: 
         (6)
Рассчитаем минимальное расстояние между легковым автомобилем и автобусом, когда ещё можно начать обгон:
Проанализируем формулу (6). Очевидно, что обгон возможен, если легковой автомобиль движется быстрее грузовика: л > гр, иначе расстояние l получается отрицательным. Также бессмыслен обгон при равных скоростях: л = гр. Итак, поставленная задача решена в рамках теории относительности, законов равномерного прямолинейного движения и, наконец, с рассмотрением принципа независимости движений. Расчёт по формуле (6) можно осуществить на алгоритмическом языке «Бейсик».
Описание слайда:
1. Для определённости за положительное направление примем направление движения легкового автомобиля и грузовика. Тогда в системе «грузовик» легковая машина будет двигаться относительно грузовика со скоростью лг = л – г. С этой скоростью ей придётся проехать расстояние s до грузовика и расстояние l (которое из соображений безопасности оговаривается правилами дорожного движения [5]), чтобы оказаться перед грузовиком. На прохождение расстояния s + l потребуется время 1. Для определённости за положительное направление примем направление движения легкового автомобиля и грузовика. Тогда в системе «грузовик» легковая машина будет двигаться относительно грузовика со скоростью лг = л – г. С этой скоростью ей придётся проехать расстояние s до грузовика и расстояние l (которое из соображений безопасности оговаривается правилами дорожного движения [5]), чтобы оказаться перед грузовиком. На прохождение расстояния s + l потребуется время .         (4) 2. Рассмотрим движение легкового автомобиля в относительной системе отсчёта «автобус». В ней скорость легковой машины относительно автобуса ла =|л – а| = л + а. Пусть первоначальное расстояние между легковым автомобилем и автобусом L. Его автомобиль пройдёт за время:          (5) 3. Обгон считается безопасным, если легковой автомобиль в конце обгона окажется на 20 м впереди грузовика, не доехав при этом до автобуса:          (6) Рассчитаем минимальное расстояние между легковым автомобилем и автобусом, когда ещё можно начать обгон: Проанализируем формулу (6). Очевидно, что обгон возможен, если легковой автомобиль движется быстрее грузовика: л > гр, иначе расстояние l получается отрицательным. Также бессмыслен обгон при равных скоростях: л = гр. Итак, поставленная задача решена в рамках теории относительности, законов равномерного прямолинейного движения и, наконец, с рассмотрением принципа независимости движений. Расчёт по формуле (6) можно осуществить на алгоритмическом языке «Бейсик».



Похожие презентации
Mypresentation.ru
Загрузить презентацию