🗊Презентация Электронные лекции по разделам классической и релятивистской механики

Категория: Физика
Нажмите для полного просмотра!
Электронные лекции по разделам классической и релятивистской механики, слайд №1Электронные лекции по разделам классической и релятивистской механики, слайд №2Электронные лекции по разделам классической и релятивистской механики, слайд №3Электронные лекции по разделам классической и релятивистской механики, слайд №4Электронные лекции по разделам классической и релятивистской механики, слайд №5Электронные лекции по разделам классической и релятивистской механики, слайд №6Электронные лекции по разделам классической и релятивистской механики, слайд №7Электронные лекции по разделам классической и релятивистской механики, слайд №8Электронные лекции по разделам классической и релятивистской механики, слайд №9Электронные лекции по разделам классической и релятивистской механики, слайд №10Электронные лекции по разделам классической и релятивистской механики, слайд №11Электронные лекции по разделам классической и релятивистской механики, слайд №12Электронные лекции по разделам классической и релятивистской механики, слайд №13Электронные лекции по разделам классической и релятивистской механики, слайд №14Электронные лекции по разделам классической и релятивистской механики, слайд №15Электронные лекции по разделам классической и релятивистской механики, слайд №16Электронные лекции по разделам классической и релятивистской механики, слайд №17Электронные лекции по разделам классической и релятивистской механики, слайд №18Электронные лекции по разделам классической и релятивистской механики, слайд №19Электронные лекции по разделам классической и релятивистской механики, слайд №20Электронные лекции по разделам классической и релятивистской механики, слайд №21Электронные лекции по разделам классической и релятивистской механики, слайд №22Электронные лекции по разделам классической и релятивистской механики, слайд №23Электронные лекции по разделам классической и релятивистской механики, слайд №24Электронные лекции по разделам классической и релятивистской механики, слайд №25Электронные лекции по разделам классической и релятивистской механики, слайд №26Электронные лекции по разделам классической и релятивистской механики, слайд №27Электронные лекции по разделам классической и релятивистской механики, слайд №28Электронные лекции по разделам классической и релятивистской механики, слайд №29Электронные лекции по разделам классической и релятивистской механики, слайд №30Электронные лекции по разделам классической и релятивистской механики, слайд №31Электронные лекции по разделам классической и релятивистской механики, слайд №32Электронные лекции по разделам классической и релятивистской механики, слайд №33Электронные лекции по разделам классической и релятивистской механики, слайд №34Электронные лекции по разделам классической и релятивистской механики, слайд №35Электронные лекции по разделам классической и релятивистской механики, слайд №36Электронные лекции по разделам классической и релятивистской механики, слайд №37Электронные лекции по разделам классической и релятивистской механики, слайд №38Электронные лекции по разделам классической и релятивистской механики, слайд №39Электронные лекции по разделам классической и релятивистской механики, слайд №40Электронные лекции по разделам классической и релятивистской механики, слайд №41Электронные лекции по разделам классической и релятивистской механики, слайд №42Электронные лекции по разделам классической и релятивистской механики, слайд №43Электронные лекции по разделам классической и релятивистской механики, слайд №44Электронные лекции по разделам классической и релятивистской механики, слайд №45Электронные лекции по разделам классической и релятивистской механики, слайд №46Электронные лекции по разделам классической и релятивистской механики, слайд №47Электронные лекции по разделам классической и релятивистской механики, слайд №48Электронные лекции по разделам классической и релятивистской механики, слайд №49Электронные лекции по разделам классической и релятивистской механики, слайд №50Электронные лекции по разделам классической и релятивистской механики, слайд №51Электронные лекции по разделам классической и релятивистской механики, слайд №52Электронные лекции по разделам классической и релятивистской механики, слайд №53Электронные лекции по разделам классической и релятивистской механики, слайд №54Электронные лекции по разделам классической и релятивистской механики, слайд №55Электронные лекции по разделам классической и релятивистской механики, слайд №56Электронные лекции по разделам классической и релятивистской механики, слайд №57Электронные лекции по разделам классической и релятивистской механики, слайд №58Электронные лекции по разделам классической и релятивистской механики, слайд №59Электронные лекции по разделам классической и релятивистской механики, слайд №60Электронные лекции по разделам классической и релятивистской механики, слайд №61Электронные лекции по разделам классической и релятивистской механики, слайд №62Электронные лекции по разделам классической и релятивистской механики, слайд №63Электронные лекции по разделам классической и релятивистской механики, слайд №64Электронные лекции по разделам классической и релятивистской механики, слайд №65Электронные лекции по разделам классической и релятивистской механики, слайд №66Электронные лекции по разделам классической и релятивистской механики, слайд №67Электронные лекции по разделам классической и релятивистской механики, слайд №68Электронные лекции по разделам классической и релятивистской механики, слайд №69Электронные лекции по разделам классической и релятивистской механики, слайд №70Электронные лекции по разделам классической и релятивистской механики, слайд №71Электронные лекции по разделам классической и релятивистской механики, слайд №72Электронные лекции по разделам классической и релятивистской механики, слайд №73Электронные лекции по разделам классической и релятивистской механики, слайд №74Электронные лекции по разделам классической и релятивистской механики, слайд №75Электронные лекции по разделам классической и релятивистской механики, слайд №76Электронные лекции по разделам классической и релятивистской механики, слайд №77Электронные лекции по разделам классической и релятивистской механики, слайд №78Электронные лекции по разделам классической и релятивистской механики, слайд №79Электронные лекции по разделам классической и релятивистской механики, слайд №80Электронные лекции по разделам классической и релятивистской механики, слайд №81Электронные лекции по разделам классической и релятивистской механики, слайд №82Электронные лекции по разделам классической и релятивистской механики, слайд №83Электронные лекции по разделам классической и релятивистской механики, слайд №84Электронные лекции по разделам классической и релятивистской механики, слайд №85Электронные лекции по разделам классической и релятивистской механики, слайд №86Электронные лекции по разделам классической и релятивистской механики, слайд №87Электронные лекции по разделам классической и релятивистской механики, слайд №88Электронные лекции по разделам классической и релятивистской механики, слайд №89Электронные лекции по разделам классической и релятивистской механики, слайд №90Электронные лекции по разделам классической и релятивистской механики, слайд №91Электронные лекции по разделам классической и релятивистской механики, слайд №92Электронные лекции по разделам классической и релятивистской механики, слайд №93Электронные лекции по разделам классической и релятивистской механики, слайд №94Электронные лекции по разделам классической и релятивистской механики, слайд №95Электронные лекции по разделам классической и релятивистской механики, слайд №96Электронные лекции по разделам классической и релятивистской механики, слайд №97Электронные лекции по разделам классической и релятивистской механики, слайд №98Электронные лекции по разделам классической и релятивистской механики, слайд №99Электронные лекции по разделам классической и релятивистской механики, слайд №100Электронные лекции по разделам классической и релятивистской механики, слайд №101Электронные лекции по разделам классической и релятивистской механики, слайд №102Электронные лекции по разделам классической и релятивистской механики, слайд №103Электронные лекции по разделам классической и релятивистской механики, слайд №104Электронные лекции по разделам классической и релятивистской механики, слайд №105

Содержание

Вы можете ознакомиться и скачать презентацию на тему Электронные лекции по разделам классической и релятивистской механики. Доклад-сообщение содержит 105 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Омский государственный технический университет

Кафедра физики
Калистратова Л.Ф. 
Электронные лекции по разделам классической и релятивистской механики
6 лекций
(12 аудиторных часов)
Описание слайда:
Омский государственный технический университет Кафедра физики Калистратова Л.Ф. Электронные лекции по разделам классической и релятивистской механики 6 лекций (12 аудиторных часов)

Слайд 2





Тема 6.  
СПЕЦИАЛЬНАЯ  ТЕОРИЯ  ОТНОСИТЕЛЬНОСТИ
План лекции
6.1. Механический принцип относительности Галилея. 
6.2. Экспериментальные основы специальной теории относительности.   
6.3. Постулаты Эйнштейна.  
6.4. Преобразования Лоренца.   
6.5. Следствия из преобразований Лоренца. 
6.6. Пространственно-временной интервал.
6.7. Релятивистская динамика. 
6.8. Взаимосвязь массы и энергии.
Описание слайда:
Тема 6. СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ План лекции 6.1. Механический принцип относительности Галилея. 6.2. Экспериментальные основы специальной теории относительности. 6.3. Постулаты Эйнштейна. 6.4. Преобразования Лоренца. 6.5. Следствия из преобразований Лоренца. 6.6. Пространственно-временной интервал. 6.7. Релятивистская динамика. 6.8. Взаимосвязь массы и энергии.

Слайд 3





6.1. Механический принцип относительности Галилея
Теория относительности родилась при попытках ответить на вопросы:
1. Нельзя ли придать понятию скорости абсолютное значение? 

2. Существует ли в природе какая-либо абсолютно неподвижная система отсчета?

Вначале рассмотрим как решался этот вопрос в рамках классической механики.
Описание слайда:
6.1. Механический принцип относительности Галилея Теория относительности родилась при попытках ответить на вопросы: 1. Нельзя ли придать понятию скорости абсолютное значение? 2. Существует ли в природе какая-либо абсолютно неподвижная система отсчета? Вначале рассмотрим как решался этот вопрос в рамках классической механики.

Слайд 4


Электронные лекции по разделам классической и релятивистской механики, слайд №4
Описание слайда:

Слайд 5





 В начальный момент времени начала координат обеих систем и направления соответствующих осей совпадают.
 В начальный момент времени начала координат обеих систем и направления соответствующих осей совпадают.
 Обе системы снабжены синхронизированными часами.
Осуществим переход координат от одной ИСО к другой.
По классической механике время абсолютно: часы, связанные с системами К и К′, всегда будут показывать одно и то же время:  t = t′.
Вычислим координаты одной и той же материальной точки М в системах К и К′.
Описание слайда:
В начальный момент времени начала координат обеих систем и направления соответствующих осей совпадают. В начальный момент времени начала координат обеих систем и направления соответствующих осей совпадают. Обе системы снабжены синхронизированными часами. Осуществим переход координат от одной ИСО к другой. По классической механике время абсолютно: часы, связанные с системами К и К′, всегда будут показывать одно и то же время: t = t′. Вычислим координаты одной и той же материальной точки М в системах К и К′.

Слайд 6





 Пусть в системе К в  момент времени t  координаты точки М - x, y, z. 
 Пусть в системе К в  момент времени t  координаты точки М - x, y, z. 
В системе К′ в момент t′ = t  её координаты соответственно x′, y′, z′. 
Отличаться будут только иксовые координаты  точки M
Преобразования Галилея – преобразования координат и времени, в основу которых положены классические свойства пространства и времени.
Описание слайда:
Пусть в системе К в момент времени t координаты точки М - x, y, z. Пусть в системе К в момент времени t координаты точки М - x, y, z. В системе К′ в момент t′ = t её координаты соответственно x′, y′, z′. Отличаться будут только иксовые координаты точки M Преобразования Галилея – преобразования координат и времени, в основу которых положены классические свойства пространства и времени.

Слайд 7


Электронные лекции по разделам классической и релятивистской механики, слайд №7
Описание слайда:

Слайд 8





Преобразования координат  и времени Галилея
Преобразования координат  и времени Галилея
Описание слайда:
Преобразования координат и времени Галилея Преобразования координат и времени Галилея

Слайд 9





Преобразования Галилея:
Преобразования Галилея:
линейны относительно времени,
координаты и время не зависят друг от друга.

Классический закон сложения скоростей

Пусть  точка М движется вдоль оси Х системе        со скоростью         .
Система К движется относительно       со скоростью V вдоль оси Х.
Определим скорость точки М относительно системы К -  
v= ?
Описание слайда:
Преобразования Галилея: Преобразования Галилея: линейны относительно времени, координаты и время не зависят друг от друга. Классический закон сложения скоростей Пусть точка М движется вдоль оси Х системе со скоростью . Система К движется относительно со скоростью V вдоль оси Х. Определим скорость точки М относительно системы К - v= ?

Слайд 10





 Проекции скорости на соответствующие оси равны производным от координат по времени:
 Проекции скорости на соответствующие оси равны производным от координат по времени:
 
По условию:
Описание слайда:
Проекции скорости на соответствующие оси равны производным от координат по времени: Проекции скорости на соответствующие оси равны производным от координат по времени: По условию:

Слайд 11






 Классический закон 
 сложения  скоростей:
Описание слайда:
Классический закон сложения скоростей:

Слайд 12






Вычислим производные по времени от проекций скорости. Поскольку V = const, то                                  
Следовательно:

                        
                                                                                          
Ускорение тела одинаково во всех ИСО:
Описание слайда:
Вычислим производные по времени от проекций скорости. Поскольку V = const, то Следовательно: Ускорение тела одинаково во всех ИСО:

Слайд 13





Второй закон Ньютона
Второй закон Ньютона

Классическая механика постулирует, что масса тела во всех системах отсчёта одинакова и не зависит от скорости:  m = m′, следовательно,                                                                                  
Тогда                 .                                       
Второй закон Ньютона в движущейся системе К′ имеет точно такой же вид, как и в неподвижной системе К.
Уравнение динамики  (в любой  из 3-х форм) ковариантно относительно преобразований Галилея.
Описание слайда:
Второй закон Ньютона Второй закон Ньютона Классическая механика постулирует, что масса тела во всех системах отсчёта одинакова и не зависит от скорости: m = m′, следовательно, Тогда . Второй закон Ньютона в движущейся системе К′ имеет точно такой же вид, как и в неподвижной системе К. Уравнение динамики (в любой из 3-х форм) ковариантно относительно преобразований Галилея.

Слайд 14





Инвариантные величины
Инвариантные величины
Инвариантными называются величины, которые не изменяются при переходе из одной ИСО в другую.

В классической механике такими величинами являются:
время, 
масса, 
ускорение, 
сила, 
длина.

Ковариантными называются уравнения, вид которых не изменяется при переходе из одной ИСО в другую.
Описание слайда:
Инвариантные величины Инвариантные величины Инвариантными называются величины, которые не изменяются при переходе из одной ИСО в другую. В классической механике такими величинами являются: время, масса, ускорение, сила, длина. Ковариантными называются уравнения, вид которых не изменяется при переходе из одной ИСО в другую.

Слайд 15





Механический принцип относительности
Механический принцип относительности

Равномерное прямолинейное движение системы отсчёта:
- не влияет на ход механических процессов;
- его невозможно обнаружить механическими опытами. 
Механический принцип относительности Галилея формулируется: никакими механическими опытами, проведенными внутри ИСО, невозможно установить покоится  эта система отсчёта или движется прямолинейно и равномерно.
Описание слайда:
Механический принцип относительности Механический принцип относительности Равномерное прямолинейное движение системы отсчёта: - не влияет на ход механических процессов; - его невозможно обнаружить механическими опытами. Механический принцип относительности Галилея формулируется: никакими механическими опытами, проведенными внутри ИСО, невозможно установить покоится эта система отсчёта или движется прямолинейно и равномерно.

Слайд 16





Из принципа относительности Галилея следует, что в рамках классической механики понятие скорости не может иметь абсолютного смысла. 
Из принципа относительности Галилея следует, что в рамках классической механики понятие скорости не может иметь абсолютного смысла. 
Бессмысленно ставить вопрос: «какова же  (на самом деле) скорость точки M: v или v′ ?». 
Обе координатные ИСО совершенно равноправны, ни одна из них не может быть выделена как преимущественная, в которой понятию скорости можно придать абсолютный смысл. 
Физический смысл имеет лишь понятие относительной скорости: скорости одних систем отсчёта или тел по отношению к другим системам отсчёта или телам.
Описание слайда:
Из принципа относительности Галилея следует, что в рамках классической механики понятие скорости не может иметь абсолютного смысла. Из принципа относительности Галилея следует, что в рамках классической механики понятие скорости не может иметь абсолютного смысла. Бессмысленно ставить вопрос: «какова же (на самом деле) скорость точки M: v или v′ ?». Обе координатные ИСО совершенно равноправны, ни одна из них не может быть выделена как преимущественная, в которой понятию скорости можно придать абсолютный смысл. Физический смысл имеет лишь понятие относительной скорости: скорости одних систем отсчёта или тел по отношению к другим системам отсчёта или телам.

Слайд 17





6.2.   Экспериментальные основы специальной теории относительности
Описание слайда:
6.2. Экспериментальные основы специальной теории относительности

Слайд 18





К концу XIX века начали накапливаться опытные факты, которые вступили в противоречие с законами классической механики. 
К концу XIX века начали накапливаться опытные факты, которые вступили в противоречие с законами классической механики. 
Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. 
В  XVII  веке Гюйгенс создал волновую теорию света.

Она основывалась на представлении о существовании эфира – некой субстанции, заполняющей всё пространство и пронизывающей все тела.
Описание слайда:
К концу XIX века начали накапливаться опытные факты, которые вступили в противоречие с законами классической механики. К концу XIX века начали накапливаться опытные факты, которые вступили в противоречие с законами классической механики. Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. В XVII веке Гюйгенс создал волновую теорию света. Она основывалась на представлении о существовании эфира – некой субстанции, заполняющей всё пространство и пронизывающей все тела.

Слайд 19





В XIX веке Максвелл создал электромагнитную теорию света.
В XIX веке Максвелл создал электромагнитную теорию света.

Она основывалась на представлению об электромагнитном эфире – всепроницающей среде, поперечные колебания которой и есть свет. 
Если существует неподвижный эфир, то связанная с ним система отсчёта будет особой, привилегированной, абсолютной. 
Тогда движение тел относительно эфира – абсолютное движение.
Описание слайда:
В XIX веке Максвелл создал электромагнитную теорию света. В XIX веке Максвелл создал электромагнитную теорию света. Она основывалась на представлению об электромагнитном эфире – всепроницающей среде, поперечные колебания которой и есть свет. Если существует неподвижный эфир, то связанная с ним система отсчёта будет особой, привилегированной, абсолютной. Тогда движение тел относительно эфира – абсолютное движение.

Слайд 20





А. Майкельсон в 1881 году, а затем в 1887 году совместно с Э. Морли (оба – американские физики) пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью опыта по интерференции света.
А. Майкельсон в 1881 году, а затем в 1887 году совместно с Э. Морли (оба – американские физики) пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью опыта по интерференции света.
Они пытались определить абсолютную скорость Земли при её движении вокруг Солнца.
Идея их опыта заключалась в следующем: 
один луч посылался в направлении орбитального движения Земли, 
другой – перпендикулярно к этому направлению.
Описание слайда:
А. Майкельсон в 1881 году, а затем в 1887 году совместно с Э. Морли (оба – американские физики) пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью опыта по интерференции света. А. Майкельсон в 1881 году, а затем в 1887 году совместно с Э. Морли (оба – американские физики) пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью опыта по интерференции света. Они пытались определить абсолютную скорость Земли при её движении вокруг Солнца. Идея их опыта заключалась в следующем: один луч посылался в направлении орбитального движения Земли, другой – перпендикулярно к этому направлению.

Слайд 21


Электронные лекции по разделам классической и релятивистской механики, слайд №21
Описание слайда:

Слайд 22





Упрощенная схема опыта Майкельсона–Морли
Упрощенная схема опыта Майкельсона–Морли
Описание слайда:
Упрощенная схема опыта Майкельсона–Морли Упрощенная схема опыта Майкельсона–Морли

Слайд 23





В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (V = 30 км/с). 
В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (V = 30 км/с). 
Затем прибор поворачивался на 90°, и второе плечо интерферометра оказывалось ориентированным перпендикулярно направлению орбитальной скорости.
Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на некоторое расстояние.
Описание слайда:
В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (V = 30 км/с). В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (V = 30 км/с). Затем прибор поворачивался на 90°, и второе плечо интерферометра оказывалось ориентированным перпендикулярно направлению орбитальной скорости. Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на некоторое расстояние.

Слайд 24





Исходя из классических представлений, в направлении орбитального движения Земли скорость света должна быть равна 
Исходя из классических представлений, в направлении орбитального движения Земли скорость света должна быть равна 
v1′ = С – V,
так как эфир движется навстречу Земле.
В перпендикулярном к орбите направлении источник света неподвижен: скорость света должна быть равна
 v2′ = С.
Описание слайда:
Исходя из классических представлений, в направлении орбитального движения Земли скорость света должна быть равна Исходя из классических представлений, в направлении орбитального движения Земли скорость света должна быть равна v1′ = С – V, так как эфир движется навстречу Земле. В перпендикулярном к орбите направлении источник света неподвижен: скорость света должна быть равна v2′ = С.

Слайд 25





Опыт Майкельсона–Морли дал отрицательный результат:
Опыт Майкельсона–Морли дал отрицательный результат:
Анализ результатов опыта Майкельсона–Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочны. 
Следовательно, для света не существует избранной (абсолютной) системы отсчета. 
Движение Земли по орбите не оказывает влияния на оптические явления на Земле.
Описание слайда:
Опыт Майкельсона–Морли дал отрицательный результат: Опыт Майкельсона–Морли дал отрицательный результат: Анализ результатов опыта Майкельсона–Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочны. Следовательно, для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не оказывает влияния на оптические явления на Земле.

Слайд 26





 Никакого движения Земли относительно эфира не существует. 
 Никакого движения Земли относительно эфира не существует. 


Несостоятельными оказались и попытки объяснить результаты опыта частичным или полным увлечением эфира движущимися телами. 
Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. 	
Объяснить полученные опытные факты, в том числе и результаты опыта Майкельсона, удалось в 1905 году А. Эйнштейну.
Описание слайда:
Никакого движения Земли относительно эфира не существует. Никакого движения Земли относительно эфира не существует. Несостоятельными оказались и попытки объяснить результаты опыта частичным или полным увлечением эфира движущимися телами. Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Объяснить полученные опытные факты, в том числе и результаты опыта Майкельсона, удалось в 1905 году А. Эйнштейну.

Слайд 27





Для этого ему пришлось изменить кардинальным образом существовавшие до того времени представления о пространстве и времени.
Для этого ему пришлось изменить кардинальным образом существовавшие до того времени представления о пространстве и времени.

Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. 
Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными.
Многие понятия и величины, которые в нерелятивистской физике считались абсолютными в эйнштейновской теории относительности переведены в разряд относительных.
Описание слайда:
Для этого ему пришлось изменить кардинальным образом существовавшие до того времени представления о пространстве и времени. Для этого ему пришлось изменить кардинальным образом существовавшие до того времени представления о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными в эйнштейновской теории относительности переведены в разряд относительных.

Слайд 28





6.3.   Постулаты Эйнштейна
Эйнштейн на основе опытных данных сделал следующие выводы:
- мирового эфира не существует. 
принцип относительности  распространяется на все без исключения физические явления. 
Первый постулат Эйнштейна - принцип относительности: никакими физическими опытами, проводимыми внутри ИСО, невозможно определить, покоится эта система отсчёта или движется прямолинейно и равномерно.
Описание слайда:
6.3. Постулаты Эйнштейна Эйнштейн на основе опытных данных сделал следующие выводы: - мирового эфира не существует. принцип относительности распространяется на все без исключения физические явления. Первый постулат Эйнштейна - принцип относительности: никакими физическими опытами, проводимыми внутри ИСО, невозможно определить, покоится эта система отсчёта или движется прямолинейно и равномерно.

Слайд 29





Второй постулат Эйнштейна - постулат о скорости света.
Второй постулат Эйнштейна - постулат о скорости света.
Скорость света в вакууме:
-  одинакова во всех инерциальных системах отсчета;
не зависит от движения источников и приемников света;
не складывается ни с какой другой скоростью;
является предельной скоростью передачи информации.

Принцип относительности и принцип постоянства скорости света образуют основу теории относительности, которая подразделяется на специальную и общую: СТО и ОТО
Описание слайда:
Второй постулат Эйнштейна - постулат о скорости света. Второй постулат Эйнштейна - постулат о скорости света. Скорость света в вакууме: - одинакова во всех инерциальных системах отсчета; не зависит от движения источников и приемников света; не складывается ни с какой другой скоростью; является предельной скоростью передачи информации. Принцип относительности и принцип постоянства скорости света образуют основу теории относительности, которая подразделяется на специальную и общую: СТО и ОТО

Слайд 30





Специальная теория относительности
Специальная теория относительности

СТО представляет собой физическую теорию пространства и времени.

СТО рассматривает движение тел в ИСО с релятивистскими скоростями, близкими к скорости света.

Общая теория относительности

ОТО рассматривает движение тел с релятивистскими скоростями в неинерциальных системах отсчёта, т.е. в системах отсчёта, движущихся с ускорением.
Описание слайда:
Специальная теория относительности Специальная теория относительности СТО представляет собой физическую теорию пространства и времени. СТО рассматривает движение тел в ИСО с релятивистскими скоростями, близкими к скорости света. Общая теория относительности ОТО рассматривает движение тел с релятивистскими скоростями в неинерциальных системах отсчёта, т.е. в системах отсчёта, движущихся с ускорением.

Слайд 31





6.4. Преобразования Лоренца-Эйнштейна
Относительность понятия одновременности
В классических преобразованиях  t = t′, поэтому события одновременные в одной ИСО, будут одновременными и в любой другой ИСО. 
Пусть роль системы К′ играет вагон равномерно идущего поезда, роль системы К – полотно железной дороги.
Описание слайда:
6.4. Преобразования Лоренца-Эйнштейна Относительность понятия одновременности В классических преобразованиях t = t′, поэтому события одновременные в одной ИСО, будут одновременными и в любой другой ИСО. Пусть роль системы К′ играет вагон равномерно идущего поезда, роль системы К – полотно железной дороги.

Слайд 32






Вдоль вагона и вдоль полотна железной дороги расставлены синхронизированные часы.
В центре вагона происходит вспышка света.
Одновременно ли свет достигнет задней и передней стенок вагона?
Описание слайда:
Вдоль вагона и вдоль полотна железной дороги расставлены синхронизированные часы. В центре вагона происходит вспышка света. Одновременно ли свет достигнет задней и передней стенок вагона?

Слайд 33





С точки зрения наблюдателя, сидящего в вагоне, свет распространяется со скоростью c относительно вагона и достигнет равноудаленных стенок одновременно. 
С точки зрения наблюдателя, сидящего в вагоне, свет распространяется со скоростью c относительно вагона и достигнет равноудаленных стенок одновременно. 
С точки зрения наблюдателя, стоящего у железнодорожного полотна, свет распространяется со скоростью с относительно него.

Левая стенка приближается к наблюдателю, а правая – удаляется  от него. 
Следовательно, свет дойдет до левой стенки раньше, чем до правой.
Описание слайда:
С точки зрения наблюдателя, сидящего в вагоне, свет распространяется со скоростью c относительно вагона и достигнет равноудаленных стенок одновременно. С точки зрения наблюдателя, сидящего в вагоне, свет распространяется со скоростью c относительно вагона и достигнет равноудаленных стенок одновременно. С точки зрения наблюдателя, стоящего у железнодорожного полотна, свет распространяется со скоростью с относительно него. Левая стенка приближается к наблюдателю, а правая – удаляется от него. Следовательно, свет дойдет до левой стенки раньше, чем до правой.

Слайд 34





Таким образом, события, одновременные в системе К′ (вагоне), оказываются неодновременными в системе К (полотно дороги). 
Таким образом, события, одновременные в системе К′ (вагоне), оказываются неодновременными в системе К (полотно дороги). 
Отсюда вытекает, что время в различных системах отсчета течёт по- разному. 
Необходимы новые преобразования координат и времени, позволяющие переходить от одной системы отсчета к другой.
Описание слайда:
Таким образом, события, одновременные в системе К′ (вагоне), оказываются неодновременными в системе К (полотно дороги). Таким образом, события, одновременные в системе К′ (вагоне), оказываются неодновременными в системе К (полотно дороги). Отсюда вытекает, что время в различных системах отсчета течёт по- разному. Необходимы новые преобразования координат и времени, позволяющие переходить от одной системы отсчета к другой.

Слайд 35





Преобразования Лоренца-Эйнштейна
Преобразования Лоренца-Эйнштейна

Преобразованиями Лоренца-Эйнштейна называются преобразования координат и времени, в основе которых лежат постулаты Эйнштейна.

Из полного равноправия всех ИСО следует, что преобразования Лоренца-Эйнштейна должны быть линейными относительно координат и времени (как и преобразования Галилея).
Любая другая зависимость между «штрихованными» и «нештрихованными» величинами означала бы неравноправие систем отсчёта.
Описание слайда:
Преобразования Лоренца-Эйнштейна Преобразования Лоренца-Эйнштейна Преобразованиями Лоренца-Эйнштейна называются преобразования координат и времени, в основе которых лежат постулаты Эйнштейна. Из полного равноправия всех ИСО следует, что преобразования Лоренца-Эйнштейна должны быть линейными относительно координат и времени (как и преобразования Галилея). Любая другая зависимость между «штрихованными» и «нештрихованными» величинами означала бы неравноправие систем отсчёта.

Слайд 36





Обозначим координаты в системе К:      x, y, z, t              в системе К′:   x′, y′, z′, t′.
Обозначим координаты в системе К:      x, y, z, t              в системе К′:   x′, y′, z′, t′.
Линейный характер преобразований Галилея и Лоренца означает, что они должны отличаться только коэффициентом пропорциональности.

Он определяется формулой: 



Коэффициент         отражает принцип постоянства скорости света.
Описание слайда:
Обозначим координаты в системе К: x, y, z, t в системе К′: x′, y′, z′, t′. Обозначим координаты в системе К: x, y, z, t в системе К′: x′, y′, z′, t′. Линейный характер преобразований Галилея и Лоренца означает, что они должны отличаться только коэффициентом пропорциональности. Он определяется формулой: Коэффициент отражает принцип постоянства скорости света.

Слайд 37





В преобразованиях Галилея этот коэффициент равен единице:
В преобразованиях Галилея этот коэффициент равен единице:
В преобразованиях Лоренца же он равен                :
Описание слайда:
В преобразованиях Галилея этот коэффициент равен единице: В преобразованиях Галилея этот коэффициент равен единице: В преобразованиях Лоренца же он равен :

Слайд 38


Электронные лекции по разделам классической и релятивистской механики, слайд №38
Описание слайда:

Слайд 39





За время t системы сместятся относительно друг друга на расстояние Vt, а сферический волновой фронт в каждой системе будет иметь радиус ct, поскольку системы равноправны и в каждой из них скорость света равна c.
За время t системы сместятся относительно друг друга на расстояние Vt, а сферический волновой фронт в каждой системе будет иметь радиус ct, поскольку системы равноправны и в каждой из них скорость света равна c.
С точки зрения наблюдателя в системе K центр сферы находится в точке O.

С точки зрения наблюдателя в системе K' он будет находиться в точке O'.
Описание слайда:
За время t системы сместятся относительно друг друга на расстояние Vt, а сферический волновой фронт в каждой системе будет иметь радиус ct, поскольку системы равноправны и в каждой из них скорость света равна c. За время t системы сместятся относительно друг друга на расстояние Vt, а сферический волновой фронт в каждой системе будет иметь радиус ct, поскольку системы равноправны и в каждой из них скорость света равна c. С точки зрения наблюдателя в системе K центр сферы находится в точке O. С точки зрения наблюдателя в системе K' он будет находиться в точке O'.

Слайд 40





Получилось, что центр сферического фронта одновременно находится в двух разных точках!
Получилось, что центр сферического фронта одновременно находится в двух разных точках!

Причина возникающего недоразумения лежит в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. 
Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течёт одинаково: t = t'.
Описание слайда:
Получилось, что центр сферического фронта одновременно находится в двух разных точках! Получилось, что центр сферического фронта одновременно находится в двух разных точках! Причина возникающего недоразумения лежит в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течёт одинаково: t = t'.

Слайд 41






Поскольку                 встал вопрос о так называемых синхронизированных часах.
Синхронизируют часы световым сигналом.

Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы).
Описание слайда:
Поскольку встал вопрос о так называемых синхронизированных часах. Синхронизируют часы световым сигналом. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы).

Слайд 42





На основе вышесказанного:  x и x′  - расстояния, на которое сместится фронт волны вдоль «иксовых» осей в системах  К и К′ :
На основе вышесказанного:  x и x′  - расстояния, на которое сместится фронт волны вдоль «иксовых» осей в системах  К и К′ :
                                 x′ = Сt′  и   x = Сt.
Тогда вместо преобразований Галилея
имеем систему уравнений:
                                               где
Не делая математических выводов этой системы , далее запишем преобразования координат и времени Лоренца-Эйнштейна.
Описание слайда:
На основе вышесказанного: x и x′ - расстояния, на которое сместится фронт волны вдоль «иксовых» осей в системах К и К′ : На основе вышесказанного: x и x′ - расстояния, на которое сместится фронт волны вдоль «иксовых» осей в системах К и К′ : x′ = Сt′ и x = Сt. Тогда вместо преобразований Галилея имеем систему уравнений: где Не делая математических выводов этой системы , далее запишем преобразования координат и времени Лоренца-Эйнштейна.

Слайд 43





Преобразования координат и времени Лоренца:
Преобразования координат и времени Лоренца:
               К  К′                                       К′  К
Описание слайда:
Преобразования координат и времени Лоренца: Преобразования координат и времени Лоренца: К  К′ К′  К

Слайд 44





Анализ преобразований Лоренца
Анализ преобразований Лоренца
1. При V<<С преобразования Лоренца переходят, как того требует принцип соответствия, в преобразования Галилея. 
2. Из преобразований Лоренца следует, что понятие времени неотделимо от понятия пространства. 
3. Пространство и время существуют в неразрывном единстве.
Описание слайда:
Анализ преобразований Лоренца Анализ преобразований Лоренца 1. При V<<С преобразования Лоренца переходят, как того требует принцип соответствия, в преобразования Галилея. 2. Из преобразований Лоренца следует, что понятие времени неотделимо от понятия пространства. 3. Пространство и время существуют в неразрывном единстве.

Слайд 45





6.4. Следствия из преобразований Лоренца
Относительность понятия длительности событий

Пусть имеются две инерциальные системы отсчёта
 К  и К′. 
Система отсчёта К  условно неподвижна, а система К′ движется относительно неё вдоль оси Х с постоянной скоростью V.
В системе отсчёта К′  в точке М  происходит  событие.
Описание слайда:
6.4. Следствия из преобразований Лоренца Относительность понятия длительности событий Пусть имеются две инерциальные системы отсчёта К и К′. Система отсчёта К условно неподвижна, а система К′ движется относительно неё вдоль оси Х с постоянной скоростью V. В системе отсчёта К′ в точке М происходит событие.

Слайд 46





Событие неподвижно относительно системы K‘, поэтому координаты  x′1 = x′2.
Событие неподвижно относительно системы K‘, поэтому координаты  x′1 = x′2.
Описание слайда:
Событие неподвижно относительно системы K‘, поэтому координаты x′1 = x′2. Событие неподвижно относительно системы K‘, поэтому координаты x′1 = x′2.

Слайд 47





Моменты начала  t′1    и конца t′2  события в системе K' фиксируются по одним и тем же эталонным часам.
Моменты начала  t′1    и конца t′2  события в системе K' фиксируются по одним и тем же эталонным часам.
Пусть известна длительность события в системе в системе           :
 Δt′ = t′2 – t′1  .

Какова длительность этого же события в системе К?         
Δt = ?
Δt = t2 – t1
Описание слайда:
Моменты начала t′1 и конца t′2 события в системе K' фиксируются по одним и тем же эталонным часам. Моменты начала t′1 и конца t′2 события в системе K' фиксируются по одним и тем же эталонным часам. Пусть известна длительность события в системе в системе : Δt′ = t′2 – t′1 . Какова длительность этого же события в системе К? Δt = ? Δt = t2 – t1

Слайд 48





В системе К′ координаты начала и конца события: 
В системе К′ координаты начала и конца события: 
 x′1, y′1, z′1, t′1   и   x′2, y′2, z′2, t′2 .   
Поскольку оба события происходят в одной и той же точке системы К′ (как говорят – «события покоятся относительно системы К′ », то
  x′1 = x′2,  y′1 = y′2,  z′1 = z′2.
Событие движется относительно системы К.

Начало события в системе К происходит в момент времени t1  в точке с координатой Х1, а конец события –в момент времени t2  в точке с координатой Х2.
Описание слайда:
В системе К′ координаты начала и конца события: В системе К′ координаты начала и конца события: x′1, y′1, z′1, t′1 и x′2, y′2, z′2, t′2 . Поскольку оба события происходят в одной и той же точке системы К′ (как говорят – «события покоятся относительно системы К′ », то x′1 = x′2, y′1 = y′2, z′1 = z′2. Событие движется относительно системы К. Начало события в системе К происходит в момент времени t1 в точке с координатой Х1, а конец события –в момент времени t2 в точке с координатой Х2.

Слайд 49





Таким образом, пространственные и временные координаты :
Таким образом, пространственные и временные координаты :
начала события в системе К  –      x1, y1, z1, t1 ,           
 конца  события  в системе К – x2, y2, z2, t2. 
В системе K начало и конец события фиксируются уже по двум синхронизованным  и пространственно разнесённым часам.
При выводе используем преобразования Лоренца-Эйнштейна при переходе  из К′ → К, учитывая, что
 x′2 = x′1.
Описание слайда:
Таким образом, пространственные и временные координаты : Таким образом, пространственные и временные координаты : начала события в системе К – x1, y1, z1, t1 , конца события в системе К – x2, y2, z2, t2. В системе K начало и конец события фиксируются уже по двум синхронизованным и пространственно разнесённым часам. При выводе используем преобразования Лоренца-Эйнштейна при переходе из К′ → К, учитывая, что x′2 = x′1.

Слайд 50


Электронные лекции по разделам классической и релятивистской механики, слайд №50
Описание слайда:

Слайд 51





Получили, что
Получили, что

Δt′- промежуток времени между событиями, измеренный в системе отсчёта, относительно которой событие покоится, называется собственным временем и обычно обозначается как Δt0.
Описание слайда:
Получили, что Получили, что Δt′- промежуток времени между событиями, измеренный в системе отсчёта, относительно которой событие покоится, называется собственным временем и обычно обозначается как Δt0.

Слайд 52





Тогда можно записать
Тогда можно записать
                                                    
Из полученного соотношения видно, что собственное время меньше промежутка времени, измеренного в любой другой системе отсчета.             
                                         меньше          .
Описание слайда:
Тогда можно записать Тогда можно записать Из полученного соотношения видно, что собственное время меньше промежутка времени, измеренного в любой другой системе отсчета. меньше .

Слайд 53





Выводы: 
Выводы: 

длительность события, происходящего в некоторой точке, наименьшая в той ИСО, относительно которой эта точка неподвижна;


движущиеся относительно ИСО часы идут медленнее покоящихся относительно этой же системы отсчёта часов;


ход часов замедляется в системе отсчёта, относительно которой часы движутся.
Описание слайда:
Выводы: Выводы: длительность события, происходящего в некоторой точке, наименьшая в той ИСО, относительно которой эта точка неподвижна; движущиеся относительно ИСО часы идут медленнее покоящихся относительно этой же системы отсчёта часов; ход часов замедляется в системе отсчёта, относительно которой часы движутся.

Слайд 54





Эти выводы нашли непосредственное опытное
Эти выводы нашли непосредственное опытное
подтверждение. 
 1. В составе космических лучей  обнаружены элементарные частицы μ-мезоны – элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. 
Эти частицы нестабильны, их  собственное время жизни равно           = 2,2 мкс.
В космических лучах μ-мезоны движутся со скоростью, близкой к скорости света (V = 2,8 108 м/с). 
С точки зрения мезона он пролетает  в атмосфере путь 
S ≈ 620 м.
Описание слайда:
Эти выводы нашли непосредственное опытное Эти выводы нашли непосредственное опытное подтверждение. 1. В составе космических лучей обнаружены элементарные частицы μ-мезоны – элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. Эти частицы нестабильны, их собственное время жизни равно = 2,2 мкс. В космических лучах μ-мезоны движутся со скоростью, близкой к скорости света (V = 2,8 108 м/с). С точки зрения мезона он пролетает в атмосфере путь S ≈ 620 м.

Слайд 55





Согласно СТО,  время жизни мезонов по часам земного наблюдателя определяется выведенной формуле и равно        = 6,1 мкс.
Согласно СТО,  время жизни мезонов по часам земного наблюдателя определяется выведенной формуле и равно        = 6,1 мкс.
Поэтому  путь, проходимый мезоном в земной системе отсчёта и равный S=V     , оказывается  1700 м. 
2. Удалось получить прямое подтверждение эффекта замедления времени в экспериментах с атомными часами на пучке атомов цезия. Эти часы «тикают» 9192631770 раз в секунду.
Описание слайда:
Согласно СТО, время жизни мезонов по часам земного наблюдателя определяется выведенной формуле и равно        = 6,1 мкс. Согласно СТО, время жизни мезонов по часам земного наблюдателя определяется выведенной формуле и равно        = 6,1 мкс. Поэтому путь, проходимый мезоном в земной системе отсчёта и равный S=V , оказывается 1700 м. 2. Удалось получить прямое подтверждение эффекта замедления времени в экспериментах с атомными часами на пучке атомов цезия. Эти часы «тикают» 9192631770 раз в секунду.

Слайд 56





Американские физики в 1971 году провели сравнение двух таких часов:
Американские физики в 1971 году провели сравнение двух таких часов:
одни из них находились в полёте вокруг Земли на обычных реактивных лайнерах,
другие оставались на Земле в обсерватории США.
В соответствии с предсказаниями СТО, путешествующие на лайнерах часы должны были отстать от находящихся на Земле часов на (184 ± 23) нс. 
Наблюдаемое отставание составило (203 ± 10) нс, т. е. в пределах ошибок измерений.
Описание слайда:
Американские физики в 1971 году провели сравнение двух таких часов: Американские физики в 1971 году провели сравнение двух таких часов: одни из них находились в полёте вокруг Земли на обычных реактивных лайнерах, другие оставались на Земле в обсерватории США. В соответствии с предсказаниями СТО, путешествующие на лайнерах часы должны были отстать от находящихся на Земле часов на (184 ± 23) нс. Наблюдаемое отставание составило (203 ± 10) нс, т. е. в пределах ошибок измерений.

Слайд 57





Относительность размеров движущихся тел
Относительность размеров движущихся тел

Пусть стержень расположен параллельно осям Х и Х′ и покоится в системе К′. 
Длина стержня  в системе К′ известна и равна разности координат:
Lо= x2′– x1′.

Относительно системы К стержень движется со скоростью V.
 Какова длина стержня в системе К: L = ?
                                       L = x2 – x1
Описание слайда:
Относительность размеров движущихся тел Относительность размеров движущихся тел Пусть стержень расположен параллельно осям Х и Х′ и покоится в системе К′. Длина стержня в системе К′ известна и равна разности координат: Lо= x2′– x1′. Относительно системы К стержень движется со скоростью V. Какова длина стержня в системе К: L = ? L = x2 – x1

Слайд 58


Электронные лекции по разделам классической и релятивистской механики, слайд №58
Описание слайда:

Слайд 59





Координаты х1 и х2 нужно засекать в один и тот же момент времени, отсчитанный по двум синхронизированным в системе К часам: t2 = t1
Координаты х1 и х2 нужно засекать в один и тот же момент времени, отсчитанный по двум синхронизированным в системе К часам: t2 = t1
Описание слайда:
Координаты х1 и х2 нужно засекать в один и тот же момент времени, отсчитанный по двум синхронизированным в системе К часам: t2 = t1 Координаты х1 и х2 нужно засекать в один и тот же момент времени, отсчитанный по двум синхронизированным в системе К часам: t2 = t1

Слайд 60





Длина стержня LO , измеренная в системе отсчёта, относительно которой он покоится, называется собственной длиной.
Длина стержня LO , измеренная в системе отсчёта, относительно которой он покоится, называется собственной длиной.

                     L меньше LO
Отсюда следует, что собственная длина стержня является максимальной, она больше длины, измеренной в любой другой системе отсчёта.
При одномерном движении тел сокращаются только продольные размеры.
Описание слайда:
Длина стержня LO , измеренная в системе отсчёта, относительно которой он покоится, называется собственной длиной. Длина стержня LO , измеренная в системе отсчёта, относительно которой он покоится, называется собственной длиной. L меньше LO Отсюда следует, что собственная длина стержня является максимальной, она больше длины, измеренной в любой другой системе отсчёта. При одномерном движении тел сокращаются только продольные размеры.

Слайд 61





Лоренцево сокращение  длины 
Лоренцево сокращение  длины 
- эффект чисто кинематический,
- нельзя ни увидеть, ни сфотографировать,
- никакими внутренними  напряжениями в телах не сопровождается. 
Примеры.
1. Скорость движения Земли вокруг Солнца равна 
30 км/с. Радиус земного шара 6400 км. 
В системе отсчёта, связанной с Солнцем, сокращение радиуса Земли составляет всего 3 см.

2. При скорости тела V = 0,85 C  его продольная дина сокращается в 2 раза.
Описание слайда:
Лоренцево сокращение длины Лоренцево сокращение длины - эффект чисто кинематический, - нельзя ни увидеть, ни сфотографировать, - никакими внутренними напряжениями в телах не сопровождается. Примеры. 1. Скорость движения Земли вокруг Солнца равна 30 км/с. Радиус земного шара 6400 км. В системе отсчёта, связанной с Солнцем, сокращение радиуса Земли составляет всего 3 см. 2. При скорости тела V = 0,85 C его продольная дина сокращается в 2 раза.

Слайд 62





 Релятивистский закон  сложения скоростей
 Релятивистский закон  сложения скоростей

Пусть точка М движется вдоль оси Х в системе К′ со скоростью           .
Система К движется относительно К’ со скоростью V.
Какова скорость этой точки относительно системы
 К? Обозначим её  через       .
Классический закон сложения скоростей при релятивистских скоростях не применим.
Описание слайда:
Релятивистский закон сложения скоростей Релятивистский закон сложения скоростей Пусть точка М движется вдоль оси Х в системе К′ со скоростью . Система К движется относительно К’ со скоростью V. Какова скорость этой точки относительно системы К? Обозначим её через . Классический закон сложения скоростей при релятивистских скоростях не применим.

Слайд 63


Электронные лекции по разделам классической и релятивистской механики, слайд №63
Описание слайда:

Слайд 64





По определению:	
По определению:	
Из преобразований  Лоренца-Эйнштейна следует:
Описание слайда:
По определению: По определению: Из преобразований Лоренца-Эйнштейна следует:

Слайд 65





Разделим уравнения друг на друга и получим
Разделим уравнения друг на друга и получим
 Поделим на dt числитель и знаменатель дроби.
Описание слайда:
Разделим уравнения друг на друга и получим Разделим уравнения друг на друга и получим Поделим на dt числитель и знаменатель дроби.

Слайд 66






                                                      или
Для перехода от системы К′ 
в систему К:
Две последние формулы выражают релятивистский закон сложения скоростей.
Описание слайда:
или Для перехода от системы К′ в систему К: Две последние формулы выражают релятивистский закон сложения скоростей.

Слайд 67





Примеры. 
Примеры. 
1. Свет распространяется в К′: v′ = С. 
Найдем скорость света относительно К:  v – ?
                                                            
Таким образом, свет в любой системе отсчета распределяется со скоростью С.
2. Две частицы движутся навстречу друг другу со скоростями v1 = 0,8 С и v2 = 0,7 С. Какова относительная скорость движения частиц?
Описание слайда:
Примеры. Примеры. 1. Свет распространяется в К′: v′ = С. Найдем скорость света относительно К: v – ? Таким образом, свет в любой системе отсчета распределяется со скоростью С. 2. Две частицы движутся навстречу друг другу со скоростями v1 = 0,8 С и v2 = 0,7 С. Какова относительная скорость движения частиц?

Слайд 68





С точки зрения классической физики она равна 1,5 С.
С точки зрения классической физики она равна 1,5 С.
Свяжем со скоростью v1  неподвижную систему 
отсчёта. 
Тогда вторая частица приближается к первой с относительной скоростью:
Описание слайда:
С точки зрения классической физики она равна 1,5 С. С точки зрения классической физики она равна 1,5 С. Свяжем со скоростью v1 неподвижную систему отсчёта. Тогда вторая частица приближается к первой с относительной скоростью:

Слайд 69





6.7.   Пространственно-временной интервал
 Следствия из преобразований Лоренца показали, что привычно неизменные величины  (такие, как размеры тел или длительность событий) оказываются относительными. 

Это является отражением факта неразрывного единства пространства и времени.
Для описания  окружающего нас мира  необходимо ввести некое новое четырехмерное пространство, элементами которого будут являться не материальные точки (тела), а события.
Описание слайда:
6.7. Пространственно-временной интервал Следствия из преобразований Лоренца показали, что привычно неизменные величины (такие, как размеры тел или длительность событий) оказываются относительными. Это является отражением факта неразрывного единства пространства и времени. Для описания окружающего нас мира необходимо ввести некое новое четырехмерное пространство, элементами которого будут являться не материальные точки (тела), а события.

Слайд 70





Событие можно охарактеризовать местом, где оно произошло (координатами x, y, z), и временем t, когда оно произошло.
Событие можно охарактеризовать местом, где оно произошло (координатами x, y, z), и временем t, когда оно произошло.
 Таким образом, событию в четырёхмерном пространстве можно сопоставить 4 числа 
x, y, z, t. 
В этом пространстве событие изобразится точкой, которую принято называть мировой точкой, а последовательность событий – мировой линией.
  
Пусть одно событие имеет координаты x1, y1, z1, t1,  и другое – x2, y2, z2, t2.
Описание слайда:
Событие можно охарактеризовать местом, где оно произошло (координатами x, y, z), и временем t, когда оно произошло. Событие можно охарактеризовать местом, где оно произошло (координатами x, y, z), и временем t, когда оно произошло. Таким образом, событию в четырёхмерном пространстве можно сопоставить 4 числа x, y, z, t. В этом пространстве событие изобразится точкой, которую принято называть мировой точкой, а последовательность событий – мировой линией. Пусть одно событие имеет координаты x1, y1, z1, t1, и другое – x2, y2, z2, t2.

Слайд 71





 Величину  
 Величину  
	
называют пространственно-временным интервалом между событиями. 
Выражение  	
– означает расстояние между точками обычного трёхмерного пространства, в которых произошли оба события.
Описание слайда:
Величину Величину называют пространственно-временным интервалом между событиями. Выражение – означает расстояние между точками обычного трёхмерного пространства, в которых произошли оба события.

Слайд 72





Пространственно-временной интервал является величиной инвариантной по отношению к любым инерциальным системам отсчёта.
Пространственно-временной интервал является величиной инвариантной по отношению к любым инерциальным системам отсчёта.
Описание слайда:
Пространственно-временной интервал является величиной инвариантной по отношению к любым инерциальным системам отсчёта. Пространственно-временной интервал является величиной инвариантной по отношению к любым инерциальным системам отсчёта.

Слайд 73





Пусть первое событие заключается в том, что из точки с координатами x1, y1, z1  отправлен в момент времени t1 световой сигнал.
Пусть первое событие заключается в том, что из точки с координатами x1, y1, z1  отправлен в момент времени t1 световой сигнал.
Вторым событием является прием этого сигнала в точке x2, y2, z2 в момент времени t2. 
Свет распространяется со скоростью C, следовательно 
Отсюда следует, что интервал между событиями в этом случае является нулевым:
Описание слайда:
Пусть первое событие заключается в том, что из точки с координатами x1, y1, z1 отправлен в момент времени t1 световой сигнал. Пусть первое событие заключается в том, что из точки с координатами x1, y1, z1 отправлен в момент времени t1 световой сигнал. Вторым событием является прием этого сигнала в точке x2, y2, z2 в момент времени t2. Свет распространяется со скоростью C, следовательно Отсюда следует, что интервал между событиями в этом случае является нулевым:

Слайд 74





Если расстояние L между точками, в которых произошли два события, превышает Ct (L>Ct), то интервал называется пространственно-подобным. 
Если расстояние L между точками, в которых произошли два события, превышает Ct (L>Ct), то интервал называется пространственно-подобным. 


Пространственно-подобный интервал   является мнимым:
Описание слайда:
Если расстояние L между точками, в которых произошли два события, превышает Ct (L>Ct), то интервал называется пространственно-подобным. Если расстояние L между точками, в которых произошли два события, превышает Ct (L>Ct), то интервал называется пространственно-подобным. Пространственно-подобный интервал является мнимым:

Слайд 75





В  случае             рассматриваемые события:
В  случае             рассматриваемые события:

- никак не могут оказывать влияние друг на друга;

не могут быть причинно связанными друг с другом;

являются абсолютно удаленными.
Всегда можно найти такую систему отсчета, в которой события происходят одновременно (t = 0).
Описание слайда:
В случае рассматриваемые события: В случае рассматриваемые события: - никак не могут оказывать влияние друг на друга; не могут быть причинно связанными друг с другом; являются абсолютно удаленными. Всегда можно найти такую систему отсчета, в которой события происходят одновременно (t = 0).

Слайд 76






При условии L< Ct интервал становится вещественной величиной:                   .
Такие интервалы называются времениподобными . 
В случае                      рассматриваемые события:   
- могут быть причинно связаны друг с другом; 

- не существует системы отсчёта, в которой они происходили бы одновременно.

Имеется система отсчета, в которой они происходят в одной и той же точке пространства (L= 0).
Описание слайда:
При условии L< Ct интервал становится вещественной величиной: . Такие интервалы называются времениподобными . В случае рассматриваемые события: - могут быть причинно связаны друг с другом; - не существует системы отсчёта, в которой они происходили бы одновременно. Имеется система отсчета, в которой они происходят в одной и той же точке пространства (L= 0).

Слайд 77








В четырёхмерном пространстве область, в которой лежат мировые линии всех частиц представляет собой конус, осью которого является ось t. 
Образующие конуса представляют собой мировые линии световых сигналов, поэтому его называют световым конусом.
Описание слайда:
В четырёхмерном пространстве область, в которой лежат мировые линии всех частиц представляет собой конус, осью которого является ось t. Образующие конуса представляют собой мировые линии световых сигналов, поэтому его называют световым конусом.

Слайд 78


Электронные лекции по разделам классической и релятивистской механики, слайд №78
Описание слайда:

Слайд 79





 Для любой точки А, лежащей в области, названной на рисунке абсолютным будущим,                  >0. 
 Для любой точки А, лежащей в области, названной на рисунке абсолютным будущим,                  >0. 
Интервал   в этом случае является времениподобным  и 
                          > 0.
 Как мы знаем, ни в одной системе отсчёта не может стать t = 0, значит, не может быть и t < 0. 
Во всех системах  событие А будет происходить после события О.
Описание слайда:
Для любой точки А, лежащей в области, названной на рисунке абсолютным будущим, >0. Для любой точки А, лежащей в области, названной на рисунке абсолютным будущим, >0. Интервал в этом случае является времениподобным и > 0. Как мы знаем, ни в одной системе отсчёта не может стать t = 0, значит, не может быть и t < 0. Во всех системах событие А будет происходить после события О.

Слайд 80





Для любой точки В, лежащей в области абсолютного прошлого 
Для любой точки В, лежащей в области абсолютного прошлого 
                                  >0,        но                         < 0.
 Это значит, что во всех системах отсчета событие В предшествует событию О.
Описание слайда:
Для любой точки В, лежащей в области абсолютного прошлого Для любой точки В, лежащей в области абсолютного прошлого >0, но < 0. Это значит, что во всех системах отсчета событие В предшествует событию О.

Слайд 81





 Для любого  из событиий С и D, мировая точка которого лежит в абсолютно удаленных областях,                                                   < 0. 
 Для любого  из событиий С и D, мировая точка которого лежит в абсолютно удаленных областях,                                                   < 0. 
Интервалы                       и                          – мнимые  и поэтому  являются пространственно - подобными. 
В любой системе отсчета события О и С или О и D происходят в разных точках пространства.
Описание слайда:
Для любого из событиий С и D, мировая точка которого лежит в абсолютно удаленных областях, < 0. Для любого из событиий С и D, мировая точка которого лежит в абсолютно удаленных областях, < 0. Интервалы и – мнимые и поэтому являются пространственно - подобными. В любой системе отсчета события О и С или О и D происходят в разных точках пространства.

Слайд 82





Понятие одновременности  для событий О и С,  и событий О и D является относительным. 
Понятие одновременности  для событий О и С,  и событий О и D является относительным. 
В одних системах отсчета событие С (или D) происходят позже, в других – раньше события О.
 
Наконец, имеется одна система отсчета, в которой событие С (и одна, в которой событие D) происходит одновременно  с событием О.
Описание слайда:
Понятие одновременности для событий О и С, и событий О и D является относительным. Понятие одновременности для событий О и С, и событий О и D является относительным. В одних системах отсчета событие С (или D) происходят позже, в других – раньше события О. Наконец, имеется одна система отсчета, в которой событие С (и одна, в которой событие D) происходит одновременно с событием О.

Слайд 83





	6.7.   Релятивистская динамика
 Первый закон Ньютона инвариантен относительно преобразований Лоренца. 
Второй закон Ньютона оказывается не инвариантен относительно преобразований Лоренца, если полагать массу постоянной .
Эйнштейн показал, что масса является функцией не только внутренних свойств тел, но и зависит от скорости их движения.
Описание слайда:
6.7. Релятивистская динамика Первый закон Ньютона инвариантен относительно преобразований Лоренца. Второй закон Ньютона оказывается не инвариантен относительно преобразований Лоренца, если полагать массу постоянной . Эйнштейн показал, что масса является функцией не только внутренних свойств тел, но и зависит от скорости их движения.

Слайд 84





                                                                                       
                                                                                       
            
                          
            
           
             - масса  покоящегося тела (масса покоя),
            – масса движущегося тела;        
   V       – скорость тела относительно неподвижной    системы.
С увеличением скорости движения масса возрастает по сложному закону.
Описание слайда:
- масса покоящегося тела (масса покоя), – масса движущегося тела; V – скорость тела относительно неподвижной системы. С увеличением скорости движения масса возрастает по сложному закону.

Слайд 85





При                              , т.е. инерция (релятивистская масса) тела беспредельно возрастает. 
При                              , т.е. инерция (релятивистская масса) тела беспредельно возрастает. 
Чтобы сообщить такому телу отличное от нуля ускорение, к нему надо приложить бесконечно большую силу. 
Между тем, любое реальное воздействие конечно.
Описание слайда:
При , т.е. инерция (релятивистская масса) тела беспредельно возрастает. При , т.е. инерция (релятивистская масса) тела беспредельно возрастает. Чтобы сообщить такому телу отличное от нуля ускорение, к нему надо приложить бесконечно большую силу. Между тем, любое реальное воздействие конечно.

Слайд 86





Ни одному телу, обладающему массой покоя , не может быть сообщена скорость, равная c. 
Ни одному телу, обладающему массой покоя , не может быть сообщена скорость, равная c. 
Со скоростью c могут двигаться лишь частицы, не имеющие массы покоя (        = 0). 
К таким частицам относятся фотоны и нейтрино, которые во всех инерциальных системах отсчета движутся со скоростью света c.
Описание слайда:
Ни одному телу, обладающему массой покоя , не может быть сообщена скорость, равная c. Ни одному телу, обладающему массой покоя , не может быть сообщена скорость, равная c. Со скоростью c могут двигаться лишь частицы, не имеющие массы покоя ( = 0). К таким частицам относятся фотоны и нейтрино, которые во всех инерциальных системах отсчета движутся со скоростью света c.

Слайд 87





Релятивистский импульс: 
Релятивистский импульс: 
Отметим, что при     v<<С     выражение для релятивистского импульса переходит в выражение классического импульса, равного:
Описание слайда:
Релятивистский импульс: Релятивистский импульс: Отметим, что при v<<С выражение для релятивистского импульса переходит в выражение классического импульса, равного:

Слайд 88





Зависимость релятивистского импульса от скорости
Зависимость релятивистского импульса от скорости
Описание слайда:
Зависимость релятивистского импульса от скорости Зависимость релятивистского импульса от скорости

Слайд 89






Второй закон Ньютона  будет ковариантен относительно преобразований Лоренца, если его записать только через релятивистский импульс в форме:
Описание слайда:
Второй закон Ньютона будет ковариантен относительно преобразований Лоренца, если его записать только через релятивистский импульс в форме:

Слайд 90





6.8.   Взаимосвязь массы и энергии
Рассмотрим некоторое тело, которое первоначально покоилось, а затем под действием внешних сил приобрело релятивистскую (близкую к с) скорость V. 
При этом его кинетическая энергия увеличилась от нуля до значения  ЕК, а масса возросла от  m0 до  m.
Согласно общим принципам механики, изменение кинетической энергии тела равно суммарной работе всех сил, действующих на тело.
Описание слайда:
6.8. Взаимосвязь массы и энергии Рассмотрим некоторое тело, которое первоначально покоилось, а затем под действием внешних сил приобрело релятивистскую (близкую к с) скорость V. При этом его кинетическая энергия увеличилась от нуля до значения ЕК, а масса возросла от m0 до m. Согласно общим принципам механики, изменение кинетической энергии тела равно суммарной работе всех сил, действующих на тело.

Слайд 91





В дифференциальной форме данное утверждение можно записать:  
В дифференциальной форме данное утверждение можно записать:  
                                                                                                       
Подставим сюда выражение для силы из второго закона Ньютона:
Описание слайда:
В дифференциальной форме данное утверждение можно записать: В дифференциальной форме данное утверждение можно записать: Подставим сюда выражение для силы из второго закона Ньютона:

Слайд 92





Получим   
Получим   
 
Найдем  независимо выражение для dm.
Описание слайда:
Получим Получим Найдем независимо выражение для dm.

Слайд 93





 Для этого запишем выражение для релятивистской массы и его продифференцируем по скорости.
 Для этого запишем выражение для релятивистской массы и его продифференцируем по скорости.
                    
Отсюда  величина
Описание слайда:
Для этого запишем выражение для релятивистской массы и его продифференцируем по скорости. Для этого запишем выражение для релятивистской массы и его продифференцируем по скорости. Отсюда величина

Слайд 94





Подставим полученное выражение вместо первого слагаемого в формулу для dEK.
Подставим полученное выражение вместо первого слагаемого в формулу для dEK.
                                    
 Проинтегрируем полученное равенство
                                                    
и   получим
Описание слайда:
Подставим полученное выражение вместо первого слагаемого в формулу для dEK. Подставим полученное выражение вместо первого слагаемого в формулу для dEK. Проинтегрируем полученное равенство и получим

Слайд 95







Полная энергия: 


Энергия покоя:



Кинетическая энергия:
Описание слайда:
Полная энергия: Энергия покоя: Кинетическая энергия:

Слайд 96





Кинетическая энергия
Кинетическая энергия

В классической механике кинетическая энергия определяется формулой:
В релятивистской механике кинетическая энергия равна разности между полной энергией тела и его энергией покоя.
Описание слайда:
Кинетическая энергия Кинетическая энергия В классической механике кинетическая энергия определяется формулой: В релятивистской механике кинетическая энергия равна разности между полной энергией тела и его энергией покоя.

Слайд 97





Докажем, что классическая формула кинетической энергии является частным случаем формулы теории относительности.
Докажем, что классическая формула кинетической энергии является частным случаем формулы теории относительности.
Описание слайда:
Докажем, что классическая формула кинетической энергии является частным случаем формулы теории относительности. Докажем, что классическая формула кинетической энергии является частным случаем формулы теории относительности.

Слайд 98





Разложим функцию  
Разложим функцию  
в приближении  V/C    <<1  в ряд и ограничимся первым слагаемым этого ряда.
В итоге получим
Описание слайда:
Разложим функцию Разложим функцию в приближении V/C <<1 в ряд и ограничимся первым слагаемым этого ряда. В итоге получим

Слайд 99





Взаимосвязь энергии с импульсом
Взаимосвязь энергии с импульсом

В классической механике кинетическая энергия через импульс выражается формулой
Формула, выражающую связь между полной энергией частицы с её релятивистским импульсом, имеет вид 
Выражение   Е2 –(рс)2  является величиной инвариантной.
Описание слайда:
Взаимосвязь энергии с импульсом Взаимосвязь энергии с импульсом В классической механике кинетическая энергия через импульс выражается формулой Формула, выражающую связь между полной энергией частицы с её релятивистским импульсом, имеет вид Выражение Е2 –(рс)2 является величиной инвариантной.

Слайд 100





 Закон взаимосвязи массы и энергии
 Закон взаимосвязи массы и энергии

 Формулировка: всякое изменение массы тела на величину          сопровождается изменением его полной энергии на величину         .

 
Наоборот, всякое изменение полной энергии тела сопровождается изменением его массы.
Описание слайда:
Закон взаимосвязи массы и энергии Закон взаимосвязи массы и энергии Формулировка: всякое изменение массы тела на величину сопровождается изменением его полной энергии на величину . Наоборот, всякое изменение полной энергии тела сопровождается изменением его массы.

Слайд 101





Нельзя, однако, представлять, что масса превращается в энергию и наоборот. 
Нельзя, однако, представлять, что масса превращается в энергию и наоборот. 
Просто любой материальный объект обладает и массой и энергией, которые пропорциональны друг другу. 
Масса и энергия  характеризуют разные свойства материи, поэтому ни о каком их взаимном превращении не может быть и речи. 
Пропорциональность массы и энергии является выражением внутренней сущности материи.
Описание слайда:
Нельзя, однако, представлять, что масса превращается в энергию и наоборот. Нельзя, однако, представлять, что масса превращается в энергию и наоборот. Просто любой материальный объект обладает и массой и энергией, которые пропорциональны друг другу. Масса и энергия характеризуют разные свойства материи, поэтому ни о каком их взаимном превращении не может быть и речи. Пропорциональность массы и энергии является выражением внутренней сущности материи.

Слайд 102





Инварианты релятивистской механики
Инварианты релятивистской механики
В  специальной теории относительности инвариантными величинами являются:
-  скорость света в вакууме;
масса покоя;
пространственно – временной интервал между событиям в четырёхмерном пространстве;
-   величина  Е2 –(рс)2 = ЕО2 .
Описание слайда:
Инварианты релятивистской механики Инварианты релятивистской механики В специальной теории относительности инвариантными величинами являются: - скорость света в вакууме; масса покоя; пространственно – временной интервал между событиям в четырёхмерном пространстве; - величина Е2 –(рс)2 = ЕО2 .

Слайд 103





Заключение
Мы рассмотрели некоторые вопросы специальной теории относительности.
В заключение отметим, что её главное значение состоит в том, что она
разрушила представления классической физики об абсолютном характере пространства и времени, 
установила их относительный характер, 
открыла неразрывную связь между ними.
не нарушила принцип причинности и порядок следования причинно-следственных событий  во всех инерциальных системах отсчета.
Пространство и время образуют единую форму существования материи.
Описание слайда:
Заключение Мы рассмотрели некоторые вопросы специальной теории относительности. В заключение отметим, что её главное значение состоит в том, что она разрушила представления классической физики об абсолютном характере пространства и времени, установила их относительный характер, открыла неразрывную связь между ними. не нарушила принцип причинности и порядок следования причинно-следственных событий во всех инерциальных системах отсчета. Пространство и время образуют единую форму существования материи.

Слайд 104





Оценивая значение теории относительности, не следует, однако, впадать в философский релятивизм (всё в мире относительно). 
Оценивая значение теории относительности, не следует, однако, впадать в философский релятивизм (всё в мире относительно). 
Теория относительности отнюдь не отрицает существование абсолютных величин и понятий. 
Она устанавливает лишь то, что ряд понятий и величин, считавшихся в классической физике абсолютными, в действительности являются относительными.
Описание слайда:
Оценивая значение теории относительности, не следует, однако, впадать в философский релятивизм (всё в мире относительно). Оценивая значение теории относительности, не следует, однако, впадать в философский релятивизм (всё в мире относительно). Теория относительности отнюдь не отрицает существование абсолютных величин и понятий. Она устанавливает лишь то, что ряд понятий и величин, считавшихся в классической физике абсолютными, в действительности являются относительными.

Слайд 105





 Не следует думать, что с появлением теории относительности классическая физика полностью утратила своё значение. 
 Не следует думать, что с появлением теории относительности классическая физика полностью утратила своё значение. 
Релятивистские эффекты для обычных макроскопических тел и обычных скоростей движения столь незначительны, что оказываются далеко за пределами практической точности.
 Поэтому в большинстве отраслей техники классическая физика применима столь же хорошо, как и прежде.
Описание слайда:
Не следует думать, что с появлением теории относительности классическая физика полностью утратила своё значение. Не следует думать, что с появлением теории относительности классическая физика полностью утратила своё значение. Релятивистские эффекты для обычных макроскопических тел и обычных скоростей движения столь незначительны, что оказываются далеко за пределами практической точности. Поэтому в большинстве отраслей техники классическая физика применима столь же хорошо, как и прежде.



Похожие презентации
Mypresentation.ru
Загрузить презентацию