🗊Презентация Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля

Категория: Физика
Нажмите для полного просмотра!
Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №1Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №2Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №3Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №4Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №5Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №6Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №7Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №8Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №9Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №10Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №11Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №12Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №13Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №14Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №15Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №16Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №17Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №18Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №19Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №20Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №21Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №22Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №23Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №24Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №25Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №26Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №27Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №28Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №29Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №30Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №31Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №32Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №33Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №34Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №35Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №36Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №37Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №38Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №39Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №40Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №41Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №42Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №43Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №44Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №45Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №46Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №47Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №48Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №49Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №50Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №51Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №52Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №53Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №54Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №55Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №56Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №57Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №58Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №59Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №60Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №61Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №62Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №63Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №64Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №65Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №66Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №67Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №68Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №69Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №70Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №71Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №72Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №73Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №74Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №75Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №76Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №77Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №78Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №79Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №80Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №81Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №82Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №83Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №84Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №85Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №86Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №87Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №88Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №89Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №90Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №91Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №92Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №93Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №94Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №95Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №96Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №97Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №98Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №99Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №100Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №101Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №102Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №103Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №104Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №105Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №106Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №107Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №108

Содержание

Вы можете ознакомиться и скачать презентацию на тему Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля. Доклад-сообщение содержит 108 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №1
Описание слайда:

Слайд 2





ФИЗИКА – НАУКА О ПРИРОДЕ. 
ФИЗИКА – НАУКА О ПРИРОДЕ. 
СОВРЕМЕННАЯ ФИЗИКА – НАУКА, ИЗУЧАЮЩАЯ ОБЩИЕ СВОЙСТВА 
МАТЕРИИ – ВЕЩЕСТВА И ПОЛЯ. 
Первый шаг при выбранной концепции построения курса физики – Механика рассматривала физические модели: материальная точка и абсолютно твердое тело, не вникая во внутреннюю структуру.
Следующий шаг в познании свойств материи – Статистическая физика устанавливает из каких частей (атомов и молекул) состоит тело, и как эти части взаимодействуют между собой.
Описание слайда:
ФИЗИКА – НАУКА О ПРИРОДЕ. ФИЗИКА – НАУКА О ПРИРОДЕ. СОВРЕМЕННАЯ ФИЗИКА – НАУКА, ИЗУЧАЮЩАЯ ОБЩИЕ СВОЙСТВА МАТЕРИИ – ВЕЩЕСТВА И ПОЛЯ. Первый шаг при выбранной концепции построения курса физики – Механика рассматривала физические модели: материальная точка и абсолютно твердое тело, не вникая во внутреннюю структуру. Следующий шаг в познании свойств материи – Статистическая физика устанавливает из каких частей (атомов и молекул) состоит тело, и как эти части взаимодействуют между собой.

Слайд 3






Поскольку атомы построены из электрически заряженных частиц (электронов и ядер), то следующий шаг в познании строения вещества – исследование электромагнитных взаимодействий.
			Электричество
Электростатика
Постоянный ток
Электромагнетизм
Описание слайда:
Поскольку атомы построены из электрически заряженных частиц (электронов и ядер), то следующий шаг в познании строения вещества – исследование электромагнитных взаимодействий. Электричество Электростатика Постоянный ток Электромагнетизм

Слайд 4





Исторический очерк. Электрические явления были известны в глубокой древности. 
Исторический очерк. Электрические явления были известны в глубокой древности. 
1) Порядка 500 лет до нашей эры Фалес Милетский обнаружил, что потертый шерстью янтарь притягивает легкие пушинки.  Его дочь пыталась почистить шерстью янтарное веретено и обнаружила этот эффект.
От слова «электрон», означающий по-гречески «янтарь» и произошел термин «электричество». Термин ввел английский врач Гильберт в XVI веке. Он обнаружил, что еще ряд веществ электризуется. 
2) При раскопках древнего Вавилона (4000 лет назад) обнаружены сосуды из глины, содержащие железный и медный стержни. На дне битум – изолирующий материал. Стержни разъедены лимонной или уксусной кислотой, то есть находка напоминает гальванический элемент.
3) Золотое покрытие вавилонских украшений можно объяснить только гальваническим способом их нанесения.
Описание слайда:
Исторический очерк. Электрические явления были известны в глубокой древности. Исторический очерк. Электрические явления были известны в глубокой древности. 1) Порядка 500 лет до нашей эры Фалес Милетский обнаружил, что потертый шерстью янтарь притягивает легкие пушинки. Его дочь пыталась почистить шерстью янтарное веретено и обнаружила этот эффект. От слова «электрон», означающий по-гречески «янтарь» и произошел термин «электричество». Термин ввел английский врач Гильберт в XVI веке. Он обнаружил, что еще ряд веществ электризуется. 2) При раскопках древнего Вавилона (4000 лет назад) обнаружены сосуды из глины, содержащие железный и медный стержни. На дне битум – изолирующий материал. Стержни разъедены лимонной или уксусной кислотой, то есть находка напоминает гальванический элемент. 3) Золотое покрытие вавилонских украшений можно объяснить только гальваническим способом их нанесения.

Слайд 5





Электростатика – раздел физики, изучающий взаимодействие и свойства систем электрических зарядов неподвижных  относительно выбранной инерциальной системы отсчета.
Электрический заряд – мера электрических свойств тел или их составных частей.
Термин ввел Б.Франклин в 1749 г. Он же – «батарея», «конденсатор», «проводник», «заряд», «разряд», «обмотка».
Описание слайда:
Электростатика – раздел физики, изучающий взаимодействие и свойства систем электрических зарядов неподвижных относительно выбранной инерциальной системы отсчета. Электрический заряд – мера электрических свойств тел или их составных частей. Термин ввел Б.Франклин в 1749 г. Он же – «батарея», «конденсатор», «проводник», «заряд», «разряд», «обмотка».

Слайд 6





Свойства электрических зарядов
1) В природе существуют 2 рода электрических зарядов:
● положительные (стекло ↨ кожа),
● отрицательные (янтарь ↨ шерсть).
● Между одноименными 
электрическими  зарядами  
действуют силы отталкивания, 
а между разноименными – 
силы притяжения.
Описание слайда:
Свойства электрических зарядов 1) В природе существуют 2 рода электрических зарядов: ● положительные (стекло ↨ кожа), ● отрицательные (янтарь ↨ шерсть). ● Между одноименными электрическими зарядами действуют силы отталкивания, а между разноименными – силы притяжения.

Слайд 7





Выбор наименований зарядов исторически случаен. Безусловный смысл имеет только различие знаков заряда. Законы не изменились бы, если бы положительные заряды переименовали в отрицательные и наоборот: законы взаимодействия зарядов симметричны к замене 
Выбор наименований зарядов исторически случаен. Безусловный смысл имеет только различие знаков заряда. Законы не изменились бы, если бы положительные заряды переименовали в отрицательные и наоборот: законы взаимодействия зарядов симметричны к замене 
	+ q на – q.
Описание слайда:
Выбор наименований зарядов исторически случаен. Безусловный смысл имеет только различие знаков заряда. Законы не изменились бы, если бы положительные заряды переименовали в отрицательные и наоборот: законы взаимодействия зарядов симметричны к замене Выбор наименований зарядов исторически случаен. Безусловный смысл имеет только различие знаков заряда. Законы не изменились бы, если бы положительные заряды переименовали в отрицательные и наоборот: законы взаимодействия зарядов симметричны к замене + q на – q.

Слайд 8





Фундаментальное свойство – наличие зарядов в двух видах – то, что заряды одного знака отталкиваются, а противоположного – притягиваются.  Причина этого современной теорией не объяснена. Существует мнение, что положительные и отрицательные заряды – это противоположное проявление одного качества. 
Фундаментальное свойство – наличие зарядов в двух видах – то, что заряды одного знака отталкиваются, а противоположного – притягиваются.  Причина этого современной теорией не объяснена. Существует мнение, что положительные и отрицательные заряды – это противоположное проявление одного качества.
Описание слайда:
Фундаментальное свойство – наличие зарядов в двух видах – то, что заряды одного знака отталкиваются, а противоположного – притягиваются. Причина этого современной теорией не объяснена. Существует мнение, что положительные и отрицательные заряды – это противоположное проявление одного качества. Фундаментальное свойство – наличие зарядов в двух видах – то, что заряды одного знака отталкиваются, а противоположного – притягиваются. Причина этого современной теорией не объяснена. Существует мнение, что положительные и отрицательные заряды – это противоположное проявление одного качества.

Слайд 9





Свойства электрических зарядов
2) Закон сохранения заряда – фундаментальный закон (экспериментально подтвержден Фарадеем в 1845 г.)
Полный электрический заряд изолированной системы есть величина постоянная.
Полный электрический заряд – сумма положительных и отрицательных зарядов, составляющих систему.
Под изолированной в электрическом поле системой понимают систему, через границы которой не может пройти никакое вещество, кроме света.
Описание слайда:
Свойства электрических зарядов 2) Закон сохранения заряда – фундаментальный закон (экспериментально подтвержден Фарадеем в 1845 г.) Полный электрический заряд изолированной системы есть величина постоянная. Полный электрический заряд – сумма положительных и отрицательных зарядов, составляющих систему. Под изолированной в электрическом поле системой понимают систему, через границы которой не может пройти никакое вещество, кроме света.

Слайд 10





В соответствии с законом сохранения заряда разноименные заряды рождаются и исчезают попарно: сколько родилось (исчезло) положительных зарядов, столько родилось (исчезло) отрицательных зарядов. Два элементарных заряда противоположных знаков в соответствии с законом сохранения заряда всегда рождаются и исчезают одновременно.
В соответствии с законом сохранения заряда разноименные заряды рождаются и исчезают попарно: сколько родилось (исчезло) положительных зарядов, столько родилось (исчезло) отрицательных зарядов. Два элементарных заряда противоположных знаков в соответствии с законом сохранения заряда всегда рождаются и исчезают одновременно.
Пример: электрон и позитрон, встречаясь друг с другом, аннигилируют, рождая два или более  гамма-фотонов.
e – + e +   2.
Описание слайда:
В соответствии с законом сохранения заряда разноименные заряды рождаются и исчезают попарно: сколько родилось (исчезло) положительных зарядов, столько родилось (исчезло) отрицательных зарядов. Два элементарных заряда противоположных знаков в соответствии с законом сохранения заряда всегда рождаются и исчезают одновременно. В соответствии с законом сохранения заряда разноименные заряды рождаются и исчезают попарно: сколько родилось (исчезло) положительных зарядов, столько родилось (исчезло) отрицательных зарядов. Два элементарных заряда противоположных знаков в соответствии с законом сохранения заряда всегда рождаются и исчезают одновременно. Пример: электрон и позитрон, встречаясь друг с другом, аннигилируют, рождая два или более гамма-фотонов. e – + e +  2.

Слайд 11





Свет может входить и выходить из системы, не нарушая  закона сохранения заряда, так как фотон не имеет заряда; при фотоэффекте возникают равные по величине положительные и отрицательные заряды, а фотон исчезает.
Свет может входить и выходить из системы, не нарушая  закона сохранения заряда, так как фотон не имеет заряда; при фотоэффекте возникают равные по величине положительные и отрицательные заряды, а фотон исчезает.
И наоборот, гамма-фотон, попадая в поле атомного ядра, превращается в пару частиц – электрон и позитрон.	
   e –  + e +.
Описание слайда:
Свет может входить и выходить из системы, не нарушая закона сохранения заряда, так как фотон не имеет заряда; при фотоэффекте возникают равные по величине положительные и отрицательные заряды, а фотон исчезает. Свет может входить и выходить из системы, не нарушая закона сохранения заряда, так как фотон не имеет заряда; при фотоэффекте возникают равные по величине положительные и отрицательные заряды, а фотон исчезает. И наоборот, гамма-фотон, попадая в поле атомного ядра, превращается в пару частиц – электрон и позитрон.   e – + e +.

Слайд 12





Свойства электрических зарядов
3) Электрический заряд – инвариант,
его величина не зависит от выбора системы отсчета.
Электрический заряд – величина релятивистки инвариантная,
не зависит от того движется заряд или покоится.
5) Квантование заряда, электрический заряд дискретен, его величина изменяется скачком.
Опыт Милликена (1910 – 1914 гг.) 
q =  ne, где n  целое число. Заряд любого тела составляет целое 	кратное от элементарного электрического заряда 
	е  = 1,61019 Кл (Кулон).
Описание слайда:
Свойства электрических зарядов 3) Электрический заряд – инвариант, его величина не зависит от выбора системы отсчета. Электрический заряд – величина релятивистки инвариантная, не зависит от того движется заряд или покоится. 5) Квантование заряда, электрический заряд дискретен, его величина изменяется скачком. Опыт Милликена (1910 – 1914 гг.) q =  ne, где n  целое число. Заряд любого тела составляет целое кратное от элементарного электрического заряда е = 1,61019 Кл (Кулон).

Слайд 13





Суммарный заряд  элементарных частиц, если частица им обладает, равен элементарному заряду.
Суммарный заряд  элементарных частиц, если частица им обладает, равен элементарному заряду.
● Наименьшая частица, обладающая отрицательным элементарным электрическим зарядом, – электрон, me= 9,11·10-31 кг,
● Наименьшая частица, обладающая положительным элементарным электрическим зарядом, –  позитрон,  mр= 1,67·10-27 кг. Таким же зарядом обладает протон, входящий в состав ядра.
Равенство зарядов электрона и протона справедливо с точностью до одной части на 1020. То есть фантастическая степень точности. Причина неясна.
Описание слайда:
Суммарный заряд элементарных частиц, если частица им обладает, равен элементарному заряду. Суммарный заряд элементарных частиц, если частица им обладает, равен элементарному заряду. ● Наименьшая частица, обладающая отрицательным элементарным электрическим зарядом, – электрон, me= 9,11·10-31 кг, ● Наименьшая частица, обладающая положительным элементарным электрическим зарядом, – позитрон, mр= 1,67·10-27 кг. Таким же зарядом обладает протон, входящий в состав ядра. Равенство зарядов электрона и протона справедливо с точностью до одной части на 1020. То есть фантастическая степень точности. Причина неясна.

Слайд 14





Более точно: установлено, что элементарные частицы представляют собой комбинацию частиц с дробным зарядом – кварков, имеющих заряды 
Более точно: установлено, что элементарные частицы представляют собой комбинацию частиц с дробным зарядом – кварков, имеющих заряды 
			и 	      . 
В свободном состоянии кварки не обнаружены.
Описание слайда:
Более точно: установлено, что элементарные частицы представляют собой комбинацию частиц с дробным зарядом – кварков, имеющих заряды Более точно: установлено, что элементарные частицы представляют собой комбинацию частиц с дробным зарядом – кварков, имеющих заряды и . В свободном состоянии кварки не обнаружены.

Слайд 15





Свойства электрических зарядов
6) Различные тела в классической физике в  зависимости от концентрации свободных зарядов делятся на
● проводники (электрические заряды могут перемещаться по всему их объему),
● диэлектрики (практически отсутствуют свободные электрические заряды, содержит только связанные заряды, входящие в состав атомов и молекул),
● полупроводники (по электропроводящим свойствам занимают промежуточное положение между проводниками и диэлектриками).
Описание слайда:
Свойства электрических зарядов 6) Различные тела в классической физике в зависимости от концентрации свободных зарядов делятся на ● проводники (электрические заряды могут перемещаться по всему их объему), ● диэлектрики (практически отсутствуют свободные электрические заряды, содержит только связанные заряды, входящие в состав атомов и молекул), ● полупроводники (по электропроводящим свойствам занимают промежуточное положение между проводниками и диэлектриками).

Слайд 16





Свойства электрических зарядов
	Проводники делятся на две группы:
1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями,
2) проводники второго рода (растворы солей, кислот), перенос зарядов (+ и − ионов) в них сопровождается химическими изменениями.
Описание слайда:
Свойства электрических зарядов Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями, 2) проводники второго рода (растворы солей, кислот), перенос зарядов (+ и − ионов) в них сопровождается химическими изменениями.

Слайд 17





Свойства электрических зарядов
7) Единица электрического заряда в 
	СИ  [1 Кл] – электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с.
q = I·t.
Описание слайда:
Свойства электрических зарядов 7) Единица электрического заряда в СИ [1 Кл] – электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. q = I·t.

Слайд 18





Закон Кулона –
основной закон электростатики 
Описывает взаимодействие точечных зарядов.
Точечный заряд сосредоточен на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел.
Точечный заряд, как физическая модель,  играет в электростатике ту же роль, что и материальная точка и абсолютно твердое тело в механике, идеальный газ в молекулярной физике, равновесные процессы и состояния в термодинамике.  
Закон впервые был открыт в 1772 г. Кавендишем.
Описание слайда:
Закон Кулона – основной закон электростатики Описывает взаимодействие точечных зарядов. Точечный заряд сосредоточен на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел. Точечный заряд, как физическая модель, играет в электростатике ту же роль, что и материальная точка и абсолютно твердое тело в механике, идеальный газ в молекулярной физике, равновесные процессы и состояния в термодинамике. Закон впервые был открыт в 1772 г. Кавендишем.

Слайд 19





Закон Кулона 
В 1785 г. Шарль Огюстен Кулон экспериментальным путем с помощью крутильных весов определил:
сила взаимодействия F двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов q1,  q2 и обратно пропорциональна квадрату расстояния  r  между ними
Описание слайда:
Закон Кулона В 1785 г. Шарль Огюстен Кулон экспериментальным путем с помощью крутильных весов определил: сила взаимодействия F двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов q1, q2 и обратно пропорциональна квадрату расстояния r между ними

Слайд 20





Закон Кулона 
В опытах определялся вращающий момент:  


Сам Кавендиш, работы которого остались неизвестными,  еще в 1770 г. получил «закон Кулона» с большей точностью.
Описание слайда:
Закон Кулона В опытах определялся вращающий момент: Сам Кавендиш, работы которого остались неизвестными, еще в 1770 г. получил «закон Кулона» с большей точностью.

Слайд 21





Закон Кулона
Сила        направлена по прямой, соединяющей взаимодействующие заряды. 
Кулоновская сила является центральной силой.
Описание слайда:
Закон Кулона Сила направлена по прямой, соединяющей взаимодействующие заряды. Кулоновская сила является центральной силой.

Слайд 22





Закон Кулона в векторном виде
Сила – величина векторная.
     Поэтому запишем закон Кулона в векторном виде.
 	1) Для произвольно выбранного начала отсчета.
Описание слайда:
Закон Кулона в векторном виде Сила – величина векторная. Поэтому запишем закон Кулона в векторном виде. 1) Для произвольно выбранного начала отсчета.

Слайд 23





Закон Кулона в векторном виде
2) Начало отсчета совпадает с одним из зарядов.
Описание слайда:
Закон Кулона в векторном виде 2) Начало отсчета совпадает с одним из зарядов.

Слайд 24





Закон Кулона
Закон Кулона выполняется при расстояниях 	10-15 м  < r < 4·104 км.
В системе СИ:  k  =  		=  9·109  	  
								[ м / Ф].
В системе СГС: k  = 1.
	ε0 =  8,85·10-12  		,[Ф / м]  – электрическая постоянная.
Описание слайда:
Закон Кулона Закон Кулона выполняется при расстояниях 10-15 м < r < 4·104 км. В системе СИ: k = = 9·109 [ м / Ф]. В системе СГС: k = 1. ε0 = 8,85·10-12 ,[Ф / м] – электрическая постоянная.

Слайд 25





Электрическое поле.
Напряженность электрического поля
Поле – форма материи, обуславливающая взаимодействие частиц вещества.
Электрическое поле – особая форма существования материи, посредством которого взаимодействуют электрические заряды.
Электростатическое поле - поле, посредством которого осуществляется кулоновское взаимодействие неподвижных электрических зарядов.
Является частным случаем электромагнитного поля.
Описание слайда:
Электрическое поле. Напряженность электрического поля Поле – форма материи, обуславливающая взаимодействие частиц вещества. Электрическое поле – особая форма существования материи, посредством которого взаимодействуют электрические заряды. Электростатическое поле - поле, посредством которого осуществляется кулоновское взаимодействие неподвижных электрических зарядов. Является частным случаем электромагнитного поля.

Слайд 26





Пробный точечный положительный заряд q0 

используют для обнаружения и исследования электростатического поля.
q0  не вызывает заметного перераспределения зарядов на телах, создающих поле.
Силовая характеристика электростатического поля  определяет, с какой силой поле действует на единичный положительный точечный заряд q0. Такой характеристикой  является напряженность электростатического поля.
Описание слайда:
Пробный точечный положительный заряд q0 используют для обнаружения и исследования электростатического поля. q0 не вызывает заметного перераспределения зарядов на телах, создающих поле. Силовая характеристика электростатического поля определяет, с какой силой поле действует на единичный положительный точечный заряд q0. Такой характеристикой является напряженность электростатического поля.

Слайд 27





Напряженность электрического поля – физическая величина, определяемая силой, действующей на пробный точечный положительный заряд q0, помещенный в эту точку поля.
Описание слайда:
Напряженность электрического поля – физическая величина, определяемая силой, действующей на пробный точечный положительный заряд q0, помещенный в эту точку поля.

Слайд 28






Напряженность электростатического  поля в данной точке численно равна силе, действующей на единичный положительный точечный заряд, помещенный в данную точку поля.
Описание слайда:
Напряженность электростатического поля в данной точке численно равна силе, действующей на единичный положительный точечный заряд, помещенный в данную точку поля.

Слайд 29






Зная напряженность поля в какой-либо точке пространства, можно найти силу, действующую на заряд , помещенный в эту точку:

Это другой вид закона Кулона, который и вводит понятие электрического поля, создающееся зарядами во всем окружающем пространстве,
а также представляет закон действия данного поля на любой заряд.
Описание слайда:
Зная напряженность поля в какой-либо точке пространства, можно найти силу, действующую на заряд , помещенный в эту точку: Это другой вид закона Кулона, который и вводит понятие электрического поля, создающееся зарядами во всем окружающем пространстве, а также представляет закон действия данного поля на любой заряд.

Слайд 30





Напряженность поля точечного заряда в вакууме.

q – источник поля,
q0+  – пробный заряд.
Описание слайда:
Напряженность поля точечного заряда в вакууме. q – источник поля, q0+ – пробный заряд.

Слайд 31





Напряженность электрического поля
E совпадает с направлением силы F, действующей на пробный заряд q0+  .
Поле создается положительным зарядом – вектор напряженности электрического поля E направлен от заряда.
Поле создается отрицательным зарядом – вектор напряженности электрического поля E направлен к заряду.
Описание слайда:
Напряженность электрического поля E совпадает с направлением силы F, действующей на пробный заряд q0+ . Поле создается положительным зарядом – вектор напряженности электрического поля E направлен от заряда. Поле создается отрицательным зарядом – вектор напряженности электрического поля E направлен к заряду.

Слайд 32





Напряженность электрического поля
СИ:  E измеряется в [1 Н /Кл = 1 В/м]  – это напряженность такого поля, которое на точечный заряд 1 Кл  действует с силой 1 Н.
Описание слайда:
Напряженность электрического поля СИ: E измеряется в [1 Н /Кл = 1 В/м] – это напряженность такого поля, которое на точечный заряд 1 Кл действует с силой 1 Н.

Слайд 33





Принцип суперпозиции напряженности электрического поля
Опытно установлено, что взаимодействие двух зарядов не зависит от присутствия других зарядов.
В соответствии с принципом независимости действия сил: на пробный заряд, помещенный в некоторую точку, будет действовать сила F со стороны всех зарядов qi, равная векторной сумме сил Fi, действующих на него со стороны каждого из зарядов.
Описание слайда:
Принцип суперпозиции напряженности электрического поля Опытно установлено, что взаимодействие двух зарядов не зависит от присутствия других зарядов. В соответствии с принципом независимости действия сил: на пробный заряд, помещенный в некоторую точку, будет действовать сила F со стороны всех зарядов qi, равная векторной сумме сил Fi, действующих на него со стороны каждого из зарядов.

Слайд 34





Принцип суперпозиции напряженности электрического поля
Описание слайда:
Принцип суперпозиции напряженности электрического поля

Слайд 35





Первый способ определения напряженности электрического поля Е – 
с помощью закона Кулона и принципа суперпозиции.

Поле электрического диполя
Описание слайда:
Первый способ определения напряженности электрического поля Е – с помощью закона Кулона и принципа суперпозиции. Поле электрического диполя

Слайд 36





Поле электрического диполя
Электрический диполь - система двух одинаковых по величине разноименных точечных зарядов, расстояние l между которыми значительно меньше расстояния до тех точек, в которых определяется поле. 
Ось диполя прямая, проходящая через оба заряда.
Описание слайда:
Поле электрического диполя Электрический диполь - система двух одинаковых по величине разноименных точечных зарядов, расстояние l между которыми значительно меньше расстояния до тех точек, в которых определяется поле. Ось диполя прямая, проходящая через оба заряда.

Слайд 37





Поле электрического диполя
r >> l   →	Диполь можно рассматривать как систему 2-х точечных зарядов.
Описание слайда:
Поле электрического диполя r >> l → Диполь можно рассматривать как систему 2-х точечных зарядов.

Слайд 38





Напряженность поля в точке, расположенной на оси диполя.
E1 – напряженность поля положительного заряда.
E2 – напряженность поля отрицательного заряда.


В проекциях на ось x:   E = E1 – E2
Описание слайда:
Напряженность поля в точке, расположенной на оси диполя. E1 – напряженность поля положительного заряда. E2 – напряженность поля отрицательного заряда. В проекциях на ось x: E = E1 – E2

Слайд 39





Напряженность поля в точке, расположенной на оси диполя.
Описание слайда:
Напряженность поля в точке, расположенной на оси диполя.

Слайд 40





Напряженность поля в точке, расположенной на оси диполя.
Поле диполя убывает быстрее в зависимости от расстояния по сравнению с полем точечного заряда.
Описание слайда:
Напряженность поля в точке, расположенной на оси диполя. Поле диполя убывает быстрее в зависимости от расстояния по сравнению с полем точечного заряда.

Слайд 41





Напряженность поля диполя в точке, лежащей на перпендикуляре, восстановленном к его середине
Описание слайда:
Напряженность поля диполя в точке, лежащей на перпендикуляре, восстановленном к его середине

Слайд 42





Напряженность поля диполя в точке, лежащей на перпендикуляре, восстановленном к его середине 
Уравнения (3),(4), (6)→(5):
Описание слайда:
Напряженность поля диполя в точке, лежащей на перпендикуляре, восстановленном к его середине Уравнения (3),(4), (6)→(5):

Слайд 43





Напряженность поля диполя в произвольной точке С, лежащей на расстоянии r от середины диполя О.
Описание слайда:
Напряженность поля диполя в произвольной точке С, лежащей на расстоянии r от середины диполя О.

Слайд 44





Напряженность поля диполя в произвольной точке С, лежащей на расстоянии r от середины диполя О. 
l << r →Угол  СNM ≈ φ	→
• Электрический момент диполя NK: 
• Электрический момент диполя MK:
Описание слайда:
Напряженность поля диполя в произвольной точке С, лежащей на расстоянии r от середины диполя О. l << r →Угол СNM ≈ φ → • Электрический момент диполя NK: • Электрический момент диполя MK:

Слайд 45





Для диполя NK точка С лежит на его оси 
Для диполя NK точка С лежит на его оси 
Для диполя МК точка С лежит на перпендикуляре
Описание слайда:
Для диполя NK точка С лежит на его оси Для диполя NK точка С лежит на его оси Для диполя МК точка С лежит на перпендикуляре

Слайд 46





Уравнения (1), (2) → (5): 
Уравнения (1), (2) → (5):
Описание слайда:
Уравнения (1), (2) → (5): Уравнения (1), (2) → (5):

Слайд 47





В предельных случаях:
В предельных случаях:
а) если , 			то есть точка лежит на оси диполя, то получим  
	
б) если , 			то есть точка лежит на перпендикуляре к оси диполя,  то получим
Описание слайда:
В предельных случаях: В предельных случаях: а) если , то есть точка лежит на оси диполя, то получим б) если , то есть точка лежит на перпендикуляре к оси диполя, то получим

Слайд 48





Линейная, поверхностная и объемная плотности зарядов
Хотя электрический заряд дискретен, число его носителей в макроскопических телах столь велико, что можно ввести понятие плотности заряда, использовав представление о непрерывном «размазанном» распределении заряда в пространстве.
Описание слайда:
Линейная, поверхностная и объемная плотности зарядов Хотя электрический заряд дискретен, число его носителей в макроскопических телах столь велико, что можно ввести понятие плотности заряда, использовав представление о непрерывном «размазанном» распределении заряда в пространстве.

Слайд 49





Линейная 
Линейная 
плотность заряда: 
заряд, приходящийся на единицу длины.   
Поверхностная 
плотность заряда:
заряд, приходящийся на единицу площади.
Объемная 
плотность заряда: 
заряд, приходящийся на единицу объема.
Описание слайда:
Линейная Линейная плотность заряда: заряд, приходящийся на единицу длины. Поверхностная плотность заряда: заряд, приходящийся на единицу площади. Объемная плотность заряда: заряд, приходящийся на единицу объема.

Слайд 50





Линейная, поверхностная и объемная плотности зарядов
Поле
Описание слайда:
Линейная, поверхностная и объемная плотности зарядов Поле

Слайд 51





Напряженность и потенциал

   В предыдущей теме было показано, что взаимодействие между покоящимися зарядами осуществляется через электростатическое поле.      Описание электростатического поля мы рассматривали с помощью вектора напряженности    , равного силе, действующей в данной точке на помещенный в неё пробный единичный положительный заряд
Описание слайда:
Напряженность и потенциал В предыдущей теме было показано, что взаимодействие между покоящимися зарядами осуществляется через электростатическое поле. Описание электростатического поля мы рассматривали с помощью вектора напряженности , равного силе, действующей в данной точке на помещенный в неё пробный единичный положительный заряд

Слайд 52





Существует и другой способ описания поля – с помощью потенциала. 
Существует и другой способ описания поля – с помощью потенциала. 
Однако для этого необходимо сначала доказать, что силы электростатического поля консервативны, а само поле потенциально.
Описание слайда:
Существует и другой способ описания поля – с помощью потенциала. Существует и другой способ описания поля – с помощью потенциала. Однако для этого необходимо сначала доказать, что силы электростатического поля консервативны, а само поле потенциально.

Слайд 53





Рассмотрим поле, создаваемое неподвижным точечным зарядом q.
Рассмотрим поле, создаваемое неподвижным точечным зарядом q.
 В любой точке этого поля на пробный точечный заряд q' действует сила  F
Описание слайда:
Рассмотрим поле, создаваемое неподвижным точечным зарядом q. Рассмотрим поле, создаваемое неподвижным точечным зарядом q. В любой точке этого поля на пробный точечный заряд q' действует сила F

Слайд 54





где F(r) – модуль вектора силы ,       – единичный вектор, определяющий положение заряда q относительно q',   ε0 – электрическая постоянная.
где F(r) – модуль вектора силы ,       – единичный вектор, определяющий положение заряда q относительно q',   ε0 – электрическая постоянная.
Описание слайда:
где F(r) – модуль вектора силы , – единичный вектор, определяющий положение заряда q относительно q', ε0 – электрическая постоянная. где F(r) – модуль вектора силы , – единичный вектор, определяющий положение заряда q относительно q', ε0 – электрическая постоянная.

Слайд 55





Для того, чтобы доказать, что электростатическое поле потенциально, нужно доказать, что силы электростатического поля консервативны. 
Для того, чтобы доказать, что электростатическое поле потенциально, нужно доказать, что силы электростатического поля консервативны. 
Из раздела «Физические основы механики» известно, что любое стационарное поле центральных сил является консервативным, т.е. работа сил этого поля не зависит от формы пути, а только от положения конечной и начальной точек.
Описание слайда:
Для того, чтобы доказать, что электростатическое поле потенциально, нужно доказать, что силы электростатического поля консервативны. Для того, чтобы доказать, что электростатическое поле потенциально, нужно доказать, что силы электростатического поля консервативны. Из раздела «Физические основы механики» известно, что любое стационарное поле центральных сил является консервативным, т.е. работа сил этого поля не зависит от формы пути, а только от положения конечной и начальной точек.

Слайд 56





Вычислим работу, которую совершает электростатическое поле, созданное зарядом q по перемещению заряда q' из точки 1 в точку 2.
Вычислим работу, которую совершает электростатическое поле, созданное зарядом q по перемещению заряда q' из точки 1 в точку 2.
Работа на отрезке пути dl равна:
	
  
где dr – приращение   радиус-вектора  при перемещении на dl;
Описание слайда:
Вычислим работу, которую совершает электростатическое поле, созданное зарядом q по перемещению заряда q' из точки 1 в точку 2. Вычислим работу, которую совершает электростатическое поле, созданное зарядом q по перемещению заряда q' из точки 1 в точку 2. Работа на отрезке пути dl равна: где dr – приращение радиус-вектора при перемещении на dl;

Слайд 57





Полная работа при перемещении  из точки 1 в точку 2 равна интегралу:
Полная работа при перемещении  из точки 1 в точку 2 равна интегралу:
Описание слайда:
Полная работа при перемещении из точки 1 в точку 2 равна интегралу: Полная работа при перемещении из точки 1 в точку 2 равна интегралу:

Слайд 58





Работа электростатических сил не зависит от формы пути, а только лишь от координат начальной и конечной точек перемещения. Следовательно, силы поля консервативны, а само поле – потенциально.
Работа электростатических сил не зависит от формы пути, а только лишь от координат начальной и конечной точек перемещения. Следовательно, силы поля консервативны, а само поле – потенциально.
Описание слайда:
Работа электростатических сил не зависит от формы пути, а только лишь от координат начальной и конечной точек перемещения. Следовательно, силы поля консервативны, а само поле – потенциально. Работа электростатических сил не зависит от формы пути, а только лишь от координат начальной и конечной точек перемещения. Следовательно, силы поля консервативны, а само поле – потенциально.

Слайд 59





Если в качестве пробного заряда, перенесенного из точки 1 заданного поля  в точку 2, взять положительный единичный заряд q, то элементарная работа сил поля будет равна:
Если в качестве пробного заряда, перенесенного из точки 1 заданного поля  в точку 2, взять положительный единичный заряд q, то элементарная работа сил поля будет равна:
Описание слайда:
Если в качестве пробного заряда, перенесенного из точки 1 заданного поля в точку 2, взять положительный единичный заряд q, то элементарная работа сил поля будет равна: Если в качестве пробного заряда, перенесенного из точки 1 заданного поля в точку 2, взять положительный единичный заряд q, то элементарная работа сил поля будет равна:

Слайд 60





Тогда вся работа равна:
Тогда вся работа равна:
		
Такой интеграл по замкнутому контуру называется циркуляцией вектора 
Из независимости линейного интеграла от пути между двумя точками следует, что по произвольному замкнутому пути:
		
теорема о циркуляции вектора        .
Описание слайда:
Тогда вся работа равна: Тогда вся работа равна: Такой интеграл по замкнутому контуру называется циркуляцией вектора Из независимости линейного интеграла от пути между двумя точками следует, что по произвольному замкнутому пути: теорема о циркуляции вектора .

Слайд 61





Для доказательства теоремы разобьем произвольно замкнутый путь на две части: 1а2 и 2b1.  Из сказанного выше следует, что
Для доказательства теоремы разобьем произвольно замкнутый путь на две части: 1а2 и 2b1.  Из сказанного выше следует, что
(Интегралы по модулю равны, но знаки противоположны). Тогда работа по замкнутому пути:
Описание слайда:
Для доказательства теоремы разобьем произвольно замкнутый путь на две части: 1а2 и 2b1. Из сказанного выше следует, что Для доказательства теоремы разобьем произвольно замкнутый путь на две части: 1а2 и 2b1. Из сказанного выше следует, что (Интегралы по модулю равны, но знаки противоположны). Тогда работа по замкнутому пути:

Слайд 62





Теорема о циркуляции позволяет сделать ряд важных выводов, практически не прибегая к расчетам. 
Теорема о циркуляции позволяет сделать ряд важных выводов, практически не прибегая к расчетам. 
Рассмотрим простой пример, подтверждающий это заключение.
1)Линии электростатического поля не могут быть замкнутыми. В самом деле, если это не так, и какая-то линия      – замкнута, то, взяв циркуляцию вдоль этой линии, мы сразу же придем к противоречию с теоремой о циркуляции вектора     :                       . 
А в данном случае направление интегрирования в одну сторону, поэтому циркуляция вектора       не равна нулю.
Описание слайда:
Теорема о циркуляции позволяет сделать ряд важных выводов, практически не прибегая к расчетам. Теорема о циркуляции позволяет сделать ряд важных выводов, практически не прибегая к расчетам. Рассмотрим простой пример, подтверждающий это заключение. 1)Линии электростатического поля не могут быть замкнутыми. В самом деле, если это не так, и какая-то линия – замкнута, то, взяв циркуляцию вдоль этой линии, мы сразу же придем к противоречию с теоремой о циркуляции вектора : . А в данном случае направление интегрирования в одну сторону, поэтому циркуляция вектора не равна нулю.

Слайд 63





Работа и 
потенциальная энергия
Мы сделали важное заключение, что электростатическое поле потенциально. 
Следовательно, можно ввести функцию состояния, зависящую от координат – потенциальную энергию.
Описание слайда:
Работа и потенциальная энергия Мы сделали важное заключение, что электростатическое поле потенциально. Следовательно, можно ввести функцию состояния, зависящую от координат – потенциальную энергию.

Слайд 64





Исходя из принципа суперпозиции сил , 
Исходя из принципа суперпозиции сил , 
можно показать, что общая работа А будет равна сумме работ каждой силы:


Здесь каждое слагаемое не зависит от формы пути, следовательно, не зависит от формы пути и сумма.
Описание слайда:
Исходя из принципа суперпозиции сил , Исходя из принципа суперпозиции сил , можно показать, что общая работа А будет равна сумме работ каждой силы: Здесь каждое слагаемое не зависит от формы пути, следовательно, не зависит от формы пути и сумма.

Слайд 65





Работу сил электростатического поля можно выразить через убыль потенциальной энергии – разность двух функций состояний:
Работу сил электростатического поля можно выразить через убыль потенциальной энергии – разность двух функций состояний:
		                                      		
 Это выражение для работы можно переписать в виде:
		                                       		    
Сопоставляя формулу (3.2.2) и (3.2.3), получаем выражение для потенциальной энергии заряда q' в поле заряда q:
Описание слайда:
Работу сил электростатического поля можно выразить через убыль потенциальной энергии – разность двух функций состояний: Работу сил электростатического поля можно выразить через убыль потенциальной энергии – разность двух функций состояний: Это выражение для работы можно переписать в виде: Сопоставляя формулу (3.2.2) и (3.2.3), получаем выражение для потенциальной энергии заряда q' в поле заряда q:

Слайд 66





Потенциал. Разность потенциалов
Разные пробные заряды q',q'',… будут обладать в одной и той же точке поля разными энергиями W', W'' и так далее. Однако отношение                 будет для всех зарядов одним и тем же. 
Поэтому можно вести скалярную величину, являющуюся энергетической характеристикой  поля – потенциал:
Описание слайда:
Потенциал. Разность потенциалов Разные пробные заряды q',q'',… будут обладать в одной и той же точке поля разными энергиями W', W'' и так далее. Однако отношение будет для всех зарядов одним и тем же. Поэтому можно вести скалярную величину, являющуюся энергетической характеристикой поля – потенциал:

Слайд 67





Из этого выражения следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.
Из этого выражения следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.
Описание слайда:
Из этого выражения следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Из этого выражения следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.

Слайд 68





Подставив в выражение для потенциала значение потенциальной энергии, получим выражение для 		потенциала точечного заряда:
Подставив в выражение для потенциала значение потенциальной энергии, получим выражение для 		потенциала точечного заряда:
		                                		
Потенциал, как и потенциальная энергия, определяют с точностью до постоянной интегрирования.
Описание слайда:
Подставив в выражение для потенциала значение потенциальной энергии, получим выражение для потенциала точечного заряда: Подставив в выражение для потенциала значение потенциальной энергии, получим выражение для потенциала точечного заряда: Потенциал, как и потенциальная энергия, определяют с точностью до постоянной интегрирования.

Слайд 69





физический смысл имеет не потенциал, а разность потенциалов, поэтому договорились считать, что потенциал точки, удаленной в бесконечность, равен нулю. 
физический смысл имеет не потенциал, а разность потенциалов, поэтому договорились считать, что потенциал точки, удаленной в бесконечность, равен нулю. 
Когда говорят «потенциал такой-то точки» – имеют в виду разность потенциалов между этой точкой и точкой, удаленной в бесконечность.
Описание слайда:
физический смысл имеет не потенциал, а разность потенциалов, поэтому договорились считать, что потенциал точки, удаленной в бесконечность, равен нулю. физический смысл имеет не потенциал, а разность потенциалов, поэтому договорились считать, что потенциал точки, удаленной в бесконечность, равен нулю. Когда говорят «потенциал такой-то точки» – имеют в виду разность потенциалов между этой точкой и точкой, удаленной в бесконечность.

Слайд 70





Другое определение потенциала:
Другое определение потенциала:


т.е. потенциал численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки в бесконечность 
(или наоборот – такую же работу нужно совершить, чтобы переместить единичный положительный заряд из бесконечности в данную точку поля). 
При этом            , если q > 0.
Описание слайда:
Другое определение потенциала: Другое определение потенциала: т.е. потенциал численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки в бесконечность (или наоборот – такую же работу нужно совершить, чтобы переместить единичный положительный заряд из бесконечности в данную точку поля). При этом , если q > 0.

Слайд 71





Если поле создается системой зарядов, то, используя принцип суперпозиции, получаем:
Если поле создается системой зарядов, то, используя принцип суперпозиции, получаем:
		                                      		   	
Тогда и для потенциала                       или
	                                       			

т.е. потенциал поля, создаваемый системой зарядов, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности. 
А вот напряженности складываются при наложении полей – векторно.
Описание слайда:
Если поле создается системой зарядов, то, используя принцип суперпозиции, получаем: Если поле создается системой зарядов, то, используя принцип суперпозиции, получаем: Тогда и для потенциала или т.е. потенциал поля, создаваемый системой зарядов, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности. А вот напряженности складываются при наложении полей – векторно.

Слайд 72





Выразим работу сил электростатического поля через разность потенциалов между начальной и конечной точками:
Выразим работу сил электростатического поля через разность потенциалов между начальной и конечной точками:
		                                       		  
Таким образом, работа над зарядом q равна произведению заряда на убыль потенциала:
		                                       		
где U – напряжение.
Описание слайда:
Выразим работу сил электростатического поля через разность потенциалов между начальной и конечной точками: Выразим работу сил электростатического поля через разность потенциалов между начальной и конечной точками: Таким образом, работа над зарядом q равна произведению заряда на убыль потенциала: где U – напряжение.

Слайд 73





Формулу                   можно использовать для установления единиц потенциала: 
Формулу                   можно использовать для установления единиц потенциала: 
	за единицу φ принимают потенциал в такой точке поля, для перемещения в которую из бесконечности единичного положительного заряда необходимо совершить работу равную единице.
В СИ  единица потенциала
Описание слайда:
Формулу можно использовать для установления единиц потенциала: Формулу можно использовать для установления единиц потенциала: за единицу φ принимают потенциал в такой точке поля, для перемещения в которую из бесконечности единичного положительного заряда необходимо совершить работу равную единице. В СИ единица потенциала

Слайд 74


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №74
Описание слайда:

Слайд 75





Связь между напряженностью и потенциалом

Изобразим перемещение заряда q` по произвольному пути l в электростатическом поле .
Работу, совершенную силами электростатического поля на бесконечно малом отрезке          можно найти так:
Описание слайда:
Связь между напряженностью и потенциалом Изобразим перемещение заряда q` по произвольному пути l в электростатическом поле . Работу, совершенную силами электростатического поля на бесконечно малом отрезке можно найти так:

Слайд 76





С другой стороны, эта работа, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl:
С другой стороны, эта работа, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl:
	
 
отсюда
Описание слайда:
С другой стороны, эта работа, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl: С другой стороны, эта работа, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl: отсюда

Слайд 77





Для ориентации dl (направление перемещения) в пространстве, надо знать проекции  на оси координат:
Для ориентации dl (направление перемещения) в пространстве, надо знать проекции  на оси координат:
	                    
		
Определение градиента: сумма первых производных от какой-либо функции по координатам есть градиент этой функции
 
                 – вектор, показывающий направление наибыстрейшего увеличения функции.
Описание слайда:
Для ориентации dl (направление перемещения) в пространстве, надо знать проекции на оси координат: Для ориентации dl (направление перемещения) в пространстве, надо знать проекции на оси координат: Определение градиента: сумма первых производных от какой-либо функции по координатам есть градиент этой функции – вектор, показывающий направление наибыстрейшего увеличения функции.

Слайд 78





Коротко связь между    и φ записывается так:
Коротко связь между    и φ записывается так:
		                                      		   (3.4.4)
или так:
	                                      	   		   (3.4.5)
где      (набла) означает символический вектор, называемый оператором Гамильтона
Знак минус говорит о том, что вектор  направлен в сторону уменьшения потенциала электрического поля.
Описание слайда:
Коротко связь между и φ записывается так: Коротко связь между и φ записывается так: (3.4.4) или так: (3.4.5) где (набла) означает символический вектор, называемый оператором Гамильтона Знак минус говорит о том, что вектор направлен в сторону уменьшения потенциала электрического поля.

Слайд 79


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №79
Описание слайда:

Слайд 80





 Безвихревой характер электростатического поля

Из условия            		  следует одно важное соотношение, а именно, величина, векторного произведения            для стационарных электрических полей всегда равна нулю. Действительно, по определению, имеем
                                                      ,
поскольку определитель содержит две одинаковые строки.
Описание слайда:
Безвихревой характер электростатического поля Из условия следует одно важное соотношение, а именно, величина, векторного произведения для стационарных электрических полей всегда равна нулю. Действительно, по определению, имеем , поскольку определитель содержит две одинаковые строки.

Слайд 81





Величина              называется ротором или вихрем 
Величина              называется ротором или вихрем 
Мы получаем важнейшее уравнение электростатики:
	                                         	(3.5.1)
		электростатическое поле –
				безвихревое.
Описание слайда:
Величина называется ротором или вихрем Величина называется ротором или вихрем Мы получаем важнейшее уравнение электростатики: (3.5.1) электростатическое поле – безвихревое.

Слайд 82





Согласно теореме Стокса, присутствует следующая связь между контурным и поверхностным интегралами:
Согласно теореме Стокса, присутствует следующая связь между контурным и поверхностным интегралами:
                                                        
где контур L ограничивающий поверхность S ориентация которой определяется направлением вектора положительной нормали      :
Поэтому работа при перемещении заряда по любому замкнутому пути в электростатическом поле равна нулю.
Описание слайда:
Согласно теореме Стокса, присутствует следующая связь между контурным и поверхностным интегралами: Согласно теореме Стокса, присутствует следующая связь между контурным и поверхностным интегралами: где контур L ограничивающий поверхность S ориентация которой определяется направлением вектора положительной нормали : Поэтому работа при перемещении заряда по любому замкнутому пути в электростатическом поле равна нулю.

Слайд 83





3.6. Силовые линии и эквипотенциальные поверхности
Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением         . 
Отсюда следует, что напряженность  равна разности потенциалов U на единицу длины силовой линии.
Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определить
                   между  двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. 
В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить         наиболее просто:
	                                              			   (3.6.1)
Описание слайда:
3.6. Силовые линии и эквипотенциальные поверхности Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии. Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определить между двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто: (3.6.1)

Слайд 84





Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется    эквипотенциальной поверхностью. 
Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется    эквипотенциальной поверхностью. 
Уравнение этой поверхности
		                                       		   (3.6.2)
Описание слайда:
Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Уравнение этой поверхности (3.6.2)

Слайд 85


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №85
Описание слайда:

Слайд 86





Формула  				выражает связь потенциала с напряженностью и позволяет по известным значениям φ   найти напряженность поля в каждой точке. 
Формула  				выражает связь потенциала с напряженностью и позволяет по известным значениям φ   найти напряженность поля в каждой точке. 
Можно решить и обратную задачу, т.е. по известным значениям       в каждой точке поля найти разность потенциалов между двумя произвольными точками поля.
Описание слайда:
Формула выражает связь потенциала с напряженностью и позволяет по известным значениям φ найти напряженность поля в каждой точке. Формула выражает связь потенциала с напряженностью и позволяет по известным значениям φ найти напряженность поля в каждой точке. Можно решить и обратную задачу, т.е. по известным значениям в каждой точке поля найти разность потенциалов между двумя произвольными точками поля.

Слайд 87






Интеграл можно брать по любой линии, соединяющие точку 1 и точку 2, ибо работа сил поля не зависит от пути. 
Для обхода по замкнутому контуру          получим:
т.е. пришли к известной нам теореме о циркуляции вектора напряженности: циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю.
Описание слайда:
Интеграл можно брать по любой линии, соединяющие точку 1 и точку 2, ибо работа сил поля не зависит от пути. Для обхода по замкнутому контуру получим: т.е. пришли к известной нам теореме о циркуляции вектора напряженности: циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю.

Слайд 88





Из обращения в нуль циркуляции вектора    следует, что линии  электростатического поля не могут быть замкнутыми: они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность
Из обращения в нуль циркуляции вектора    следует, что линии  электростатического поля не могут быть замкнутыми: они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность
Описание слайда:
Из обращения в нуль циркуляции вектора следует, что линии электростатического поля не могут быть замкнутыми: они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность Из обращения в нуль циркуляции вектора следует, что линии электростатического поля не могут быть замкнутыми: они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность

Слайд 89


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №89
Описание слайда:

Слайд 90





3.7. Расчет потенциалов простейших электростатических полей

Рассмотрим несколько примеров вычисления разности потенциалов между точками поля, созданного некоторыми заряженными телами
Описание слайда:
3.7. Расчет потенциалов простейших электростатических полей Рассмотрим несколько примеров вычисления разности потенциалов между точками поля, созданного некоторыми заряженными телами

Слайд 91


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №91
Описание слайда:

Слайд 92







Мы показали, что напряженность связана с потенциалом
                                 
					 отсюда
	                                        		        	
где                      – напряженность электростатического поля между заряженными плоскостями
 σ = q/S – поверхностная плотность заряда.
Описание слайда:
Мы показали, что напряженность связана с потенциалом отсюда где – напряженность электростатического поля между заряженными плоскостями σ = q/S – поверхностная плотность заряда.

Слайд 93





 Чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение 
 Чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение 
	 
                                   			
                                     
                                           			
	
При x1 = 0  и  x2 = d    			          	     (3.7.3)
Описание слайда:
Чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение Чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение При x1 = 0 и x2 = d (3.7.3)

Слайд 94





На рисунке изображена зависимость напряженности E и потенциала φ от расстояния между плоскостями.
На рисунке изображена зависимость напряженности E и потенциала φ от расстояния между плоскостями.
Описание слайда:
На рисунке изображена зависимость напряженности E и потенциала φ от расстояния между плоскостями. На рисунке изображена зависимость напряженности E и потенциала φ от расстояния между плоскостями.

Слайд 95





3.7.2. Разность потенциалов между точками поля, образованного бесконечно длинной цилиндрической              поверхностью

С помощью теоремы Остроградского-Гаусса мы показали, что
Описание слайда:
3.7.2. Разность потенциалов между точками поля, образованного бесконечно длинной цилиндрической поверхностью С помощью теоремы Остроградского-Гаусса мы показали, что

Слайд 96





Тогда,т.к.  
Тогда,т.к.  
 отсюда следует, что разность потенциалов в произвольных точках 1 и 2 будет равна:
Описание слайда:
Тогда,т.к. Тогда,т.к. отсюда следует, что разность потенциалов в произвольных точках 1 и 2 будет равна:

Слайд 97


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №97
Описание слайда:

Слайд 98





3.7.3. Разность потенциалов между обкладками                     цилиндрического конденсатора
Описание слайда:
3.7.3. Разность потенциалов между обкладками цилиндрического конденсатора

Слайд 99





Т.к.				, то
Т.к.				, то
Описание слайда:
Т.к. , то Т.к. , то

Слайд 100





Таким образом, внутри меньшего цилиндра имеем , Е = 0, φ = const;  
Таким образом, внутри меньшего цилиндра имеем , Е = 0, φ = const;  
между обкладками потенциал уменьшается по логарифмическому закону, 
вторая обкладка (вне цилиндров) экранирует электрическое поле и φ и Е равны нулю.
Описание слайда:
Таким образом, внутри меньшего цилиндра имеем , Е = 0, φ = const; Таким образом, внутри меньшего цилиндра имеем , Е = 0, φ = const; между обкладками потенциал уменьшается по логарифмическому закону, вторая обкладка (вне цилиндров) экранирует электрическое поле и φ и Е равны нулю.

Слайд 101





3.7.4. Разность потенциалов заряженной сферы  (пустотелой)

Напряженность поля сферы определяется формулой
Описание слайда:
3.7.4. Разность потенциалов заряженной сферы (пустотелой) Напряженность поля сферы определяется формулой

Слайд 102





А т.к.                                 , то
А т.к.                                 , то
Описание слайда:
А т.к. , то А т.к. , то

Слайд 103


Физика – наука о природе. Современная физика – наука, изучающая общие свойства материи – вещества и поля, слайд №103
Описание слайда:

Слайд 104





3.7.5. Разность потенциалов внутри диэлектрического заряженного шара

Имеем диэлектрический шар заряженный с объемной плотностью
Описание слайда:
3.7.5. Разность потенциалов внутри диэлектрического заряженного шара Имеем диэлектрический шар заряженный с объемной плотностью

Слайд 105





Напряженность поля шара, вычисленная с помощью теоремы Остроградского-Гаусса:
Напряженность поля шара, вычисленная с помощью теоремы Остроградского-Гаусса:
Описание слайда:
Напряженность поля шара, вычисленная с помощью теоремы Остроградского-Гаусса: Напряженность поля шара, вычисленная с помощью теоремы Остроградского-Гаусса:

Слайд 106





Отсюда найдем разность потенциалов шара:
Отсюда найдем разность потенциалов шара:
		
                        или
Описание слайда:
Отсюда найдем разность потенциалов шара: Отсюда найдем разность потенциалов шара: или

Слайд 107





Потенциал шара:
Потенциал шара:
Описание слайда:
Потенциал шара: Потенциал шара:

Слайд 108





Из полученных соотношений можно сделать следующие выводы:
Из полученных соотношений можно сделать следующие выводы:

С помощью теоремы Гаусса сравнительно просто можно рассчитать Е и φ от различных заряженных поверхностей.

Напряженность поля в вакууме изменяется скачком при переходе через заряженную поверхность.

Потенциал поля – всегда непрерывная функция координат.
Описание слайда:
Из полученных соотношений можно сделать следующие выводы: Из полученных соотношений можно сделать следующие выводы: С помощью теоремы Гаусса сравнительно просто можно рассчитать Е и φ от различных заряженных поверхностей. Напряженность поля в вакууме изменяется скачком при переходе через заряженную поверхность. Потенциал поля – всегда непрерывная функция координат.



Похожие презентации
Mypresentation.ru
Загрузить презентацию