🗊Презентация Фотонные сенсоры. Фотонные кристаллы

Категория: Физика
Нажмите для полного просмотра!
Фотонные сенсоры. Фотонные кристаллы, слайд №1Фотонные сенсоры. Фотонные кристаллы, слайд №2Фотонные сенсоры. Фотонные кристаллы, слайд №3Фотонные сенсоры. Фотонные кристаллы, слайд №4Фотонные сенсоры. Фотонные кристаллы, слайд №5Фотонные сенсоры. Фотонные кристаллы, слайд №6Фотонные сенсоры. Фотонные кристаллы, слайд №7Фотонные сенсоры. Фотонные кристаллы, слайд №8Фотонные сенсоры. Фотонные кристаллы, слайд №9Фотонные сенсоры. Фотонные кристаллы, слайд №10Фотонные сенсоры. Фотонные кристаллы, слайд №11

Вы можете ознакомиться и скачать презентацию на тему Фотонные сенсоры. Фотонные кристаллы. Доклад-сообщение содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Фотонные сенсоры. Фотонные кристаллы, слайд №1
Описание слайда:

Слайд 2






Фотонные кристаллы, благодаря периодическому изменению коэффициента преломления, позволяют получить разрешенные и запрещенные зоны для энергий фотонов, аналогично полупроводниковым материалам, в которых наблюдаются разрешенные и запрещенные зоны для энергий носителей заряда. Практически, это значит что если на фотонный кристалл падает фотон, обладающий энергией (длиной волны, частотой), которая соответствует запрещенной зоне данного фотонного кристалла, то он не может распространяться в фотонном кристалле и отражается обратно. И наоборот, это значит что если на фотонный кристалл падает фотон, обладающий энергией (длиной волны, частотой), которая соответствует разрешенной зоне данного фотонного кристалла, то он может распространяться в фотонном кристалле. Другими словами, фотонный кристалл выполняет функцию оптического фильтра, и именно его свойствами обусловленны яркие и красочные цвета опала в браслете, который показан на следующем рисунке. В природе фотонные кристаллы также встречаются на крыльях африканских бабочек-парусников (Princeps nireus)
Описание слайда:
Фотонные кристаллы, благодаря периодическому изменению коэффициента преломления, позволяют получить разрешенные и запрещенные зоны для энергий фотонов, аналогично полупроводниковым материалам, в которых наблюдаются разрешенные и запрещенные зоны для энергий носителей заряда. Практически, это значит что если на фотонный кристалл падает фотон, обладающий энергией (длиной волны, частотой), которая соответствует запрещенной зоне данного фотонного кристалла, то он не может распространяться в фотонном кристалле и отражается обратно. И наоборот, это значит что если на фотонный кристалл падает фотон, обладающий энергией (длиной волны, частотой), которая соответствует разрешенной зоне данного фотонного кристалла, то он может распространяться в фотонном кристалле. Другими словами, фотонный кристалл выполняет функцию оптического фильтра, и именно его свойствами обусловленны яркие и красочные цвета опала в браслете, который показан на следующем рисунке. В природе фотонные кристаллы также встречаются на крыльях африканских бабочек-парусников (Princeps nireus)

Слайд 3


Фотонные сенсоры. Фотонные кристаллы, слайд №3
Описание слайда:

Слайд 4





1. одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении
1. одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении
2. двухмерные, в которых коэффициент преломления периодически изменяется в двух пространственных направлениях
3. трехмерные, в которых коэффициент преломления периодически изменяется в трех пространственных направлениях.
Описание слайда:
1. одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении 1. одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении 2. двухмерные, в которых коэффициент преломления периодически изменяется в двух пространственных направлениях 3. трехмерные, в которых коэффициент преломления периодически изменяется в трех пространственных направлениях.

Слайд 5





На этом рисунке символом Λ обозначен период изменения коэффициента преломления, n1 и n2 - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.
На этом рисунке символом Λ обозначен период изменения коэффициента преломления, n1 и n2 - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.
Описание слайда:
На этом рисунке символом Λ обозначен период изменения коэффициента преломления, n1 и n2 - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям. На этом рисунке символом Λ обозначен период изменения коэффициента преломления, n1 и n2 - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.

Слайд 6





 На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления n1, которые находятся в среде с коэффициентом преломления n2. При этом, области с коэффициентом преломления n1 упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т.д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке.
 На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления n1, которые находятся в среде с коэффициентом преломления n2. При этом, области с коэффициентом преломления n1 упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т.д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке.
Описание слайда:
На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления n1, которые находятся в среде с коэффициентом преломления n2. При этом, области с коэффициентом преломления n1 упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т.д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке. На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления n1, которые находятся в среде с коэффициентом преломления n2. При этом, области с коэффициентом преломления n1 упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т.д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке.

Слайд 7





Такие фотонные кристаллы могут проявлять свои свойства в трех пространственных направлениях, и можно их представить как массив объемных областей (сфер, кубов и т.д.), упорядоченных в трехмерной кристаллической решётке.
Такие фотонные кристаллы могут проявлять свои свойства в трех пространственных направлениях, и можно их представить как массив объемных областей (сфер, кубов и т.д.), упорядоченных в трехмерной кристаллической решётке.
Описание слайда:
Такие фотонные кристаллы могут проявлять свои свойства в трех пространственных направлениях, и можно их представить как массив объемных областей (сфер, кубов и т.д.), упорядоченных в трехмерной кристаллической решётке. Такие фотонные кристаллы могут проявлять свои свойства в трех пространственных направлениях, и можно их представить как массив объемных областей (сфер, кубов и т.д.), упорядоченных в трехмерной кристаллической решётке.

Слайд 8





Как и электрические среды в зависимости от широты запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники — способные проводить свет на большие расстояния с малыми потерями, диэлектрики — практически идеальные зеркала, полупроводники — вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники, в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния.
Как и электрические среды в зависимости от широты запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники — способные проводить свет на большие расстояния с малыми потерями, диэлектрики — практически идеальные зеркала, полупроводники — вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники, в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния.

Также различают резонансные и нерезонансные фотонные кристаллы. Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.
Описание слайда:
Как и электрические среды в зависимости от широты запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники — способные проводить свет на большие расстояния с малыми потерями, диэлектрики — практически идеальные зеркала, полупроводники — вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники, в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния. Как и электрические среды в зависимости от широты запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники — способные проводить свет на большие расстояния с малыми потерями, диэлектрики — практически идеальные зеркала, полупроводники — вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники, в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния. Также различают резонансные и нерезонансные фотонные кристаллы. Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.

Слайд 9





Благодаря упорядоченному характеру явления удержания фотонов в фотонном кристалле, на основе этих сред возможно построение оптических запоминающих устройств и логических устройств;
Благодаря упорядоченному характеру явления удержания фотонов в фотонном кристалле, на основе этих сред возможно построение оптических запоминающих устройств и логических устройств;
Лазеры с фотонными кристаллами позволят получить малосигнальную лазерную генерацию, так называемые низкопороговые и безпороговые лазеры;
Волноводы основанные на фотонных кристаллах могут быть очень компактны и обладать малыми потерями;
С помощью фотонных кристаллов можно будет создавать среды с отрицательным коэффициентом преломления, что даст возможность фокусировать свет в точку размерами меньше длины волны(«суперлинзы»);
Фотонные кристаллы обладают существенными дисперсионными свойствами (их свойства зависят от длины волны проходящего через них излучения), это даст возможность создать суперпризмы;
Новый класс дисплеев частично или полностью заменит существующее. Новые дисплеи будут использовать фотонные кристаллы для получения любого цвета излучения из одного пикселя;
Фотонные сверхпроводники способны работать с большими частотами и отлично совмещаются с фотонными изоляторами и полупроводниками.
Описание слайда:
Благодаря упорядоченному характеру явления удержания фотонов в фотонном кристалле, на основе этих сред возможно построение оптических запоминающих устройств и логических устройств; Благодаря упорядоченному характеру явления удержания фотонов в фотонном кристалле, на основе этих сред возможно построение оптических запоминающих устройств и логических устройств; Лазеры с фотонными кристаллами позволят получить малосигнальную лазерную генерацию, так называемые низкопороговые и безпороговые лазеры; Волноводы основанные на фотонных кристаллах могут быть очень компактны и обладать малыми потерями; С помощью фотонных кристаллов можно будет создавать среды с отрицательным коэффициентом преломления, что даст возможность фокусировать свет в точку размерами меньше длины волны(«суперлинзы»); Фотонные кристаллы обладают существенными дисперсионными свойствами (их свойства зависят от длины волны проходящего через них излучения), это даст возможность создать суперпризмы; Новый класс дисплеев частично или полностью заменит существующее. Новые дисплеи будут использовать фотонные кристаллы для получения любого цвета излучения из одного пикселя; Фотонные сверхпроводники способны работать с большими частотами и отлично совмещаются с фотонными изоляторами и полупроводниками.

Слайд 10


Фотонные сенсоры. Фотонные кристаллы, слайд №10
Описание слайда:

Слайд 11





http://nano.ece.uiuc.edu/research/sensors.html 
http://nano.ece.uiuc.edu/research/sensors.html 
http://www.photonics.com/content/spectra/2006/June/tech/82880.aspx
http://perst.isssph.kiae.ru/inform/perst/2003/3_20/perst.htm
http://ru.wikipedia.org/wiki/Фотонный_кристалл
Описание слайда:
http://nano.ece.uiuc.edu/research/sensors.html http://nano.ece.uiuc.edu/research/sensors.html http://www.photonics.com/content/spectra/2006/June/tech/82880.aspx http://perst.isssph.kiae.ru/inform/perst/2003/3_20/perst.htm http://ru.wikipedia.org/wiki/Фотонный_кристалл



Похожие презентации
Mypresentation.ru
Загрузить презентацию