🗊Генная Инженерия Работу выполнил ученик 10 класса – Кириллов Роман.

Категория: Биология
Нажмите для полного просмотра!
Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №1Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №2Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №3Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №4Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №5Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №6Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №7Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №8Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №9Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №10

Вы можете ознакомиться и скачать Генная Инженерия Работу выполнил ученик 10 класса – Кириллов Роман.. Презентация содержит 10 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Генная Инженерия
Работу выполнил ученик 10 класса – Кириллов Роман.
Описание слайда:
Генная Инженерия Работу выполнил ученик 10 класса – Кириллов Роман.

Слайд 2





Генетическая инженерия
Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.
Описание слайда:
Генетическая инженерия Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Слайд 3





Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
Описание слайда:
Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Слайд 4





История развития и достигнутый уровень технологии
Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках — это мутации. Они происходят под действием, например, мутагенов — химических ядов или излучений.
Описание слайда:
История развития и достигнутый уровень технологии Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках — это мутации. Они происходят под действием, например, мутагенов — химических ядов или излучений.

Слайд 5





Генная инженерия человека
В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома* его потомков.
Описание слайда:
Генная инженерия человека В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома* его потомков.

Слайд 6





Применение в научных исследованиях
Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию.
Описание слайда:
Применение в научных исследованиях Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию.

Слайд 7





Применение в научных исследованиях
Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.
Описание слайда:
Применение в научных исследованиях Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Слайд 8





Применение в научных исследованиях
Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка
Описание слайда:
Применение в научных исследованиях Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка

Слайд 9





Применение в научных исследованиях
Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции*. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP** или фермента, катализирующего легко обнаруживаемую реакцию.
Описание слайда:
Применение в научных исследованиях Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции*. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP** или фермента, катализирующего легко обнаруживаемую реакцию.

Слайд 10


Генная Инженерия  Работу выполнил ученик 10 класса – Кириллов Роман., слайд №10
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию