🗊Презентация Интеллектуальные системы. Компьютерное зрение

Категория: Технология
Нажмите для полного просмотра!
Интеллектуальные системы. Компьютерное зрение, слайд №1Интеллектуальные системы. Компьютерное зрение, слайд №2Интеллектуальные системы. Компьютерное зрение, слайд №3Интеллектуальные системы. Компьютерное зрение, слайд №4Интеллектуальные системы. Компьютерное зрение, слайд №5Интеллектуальные системы. Компьютерное зрение, слайд №6Интеллектуальные системы. Компьютерное зрение, слайд №7Интеллектуальные системы. Компьютерное зрение, слайд №8Интеллектуальные системы. Компьютерное зрение, слайд №9Интеллектуальные системы. Компьютерное зрение, слайд №10Интеллектуальные системы. Компьютерное зрение, слайд №11Интеллектуальные системы. Компьютерное зрение, слайд №12Интеллектуальные системы. Компьютерное зрение, слайд №13Интеллектуальные системы. Компьютерное зрение, слайд №14Интеллектуальные системы. Компьютерное зрение, слайд №15Интеллектуальные системы. Компьютерное зрение, слайд №16Интеллектуальные системы. Компьютерное зрение, слайд №17Интеллектуальные системы. Компьютерное зрение, слайд №18Интеллектуальные системы. Компьютерное зрение, слайд №19Интеллектуальные системы. Компьютерное зрение, слайд №20Интеллектуальные системы. Компьютерное зрение, слайд №21Интеллектуальные системы. Компьютерное зрение, слайд №22Интеллектуальные системы. Компьютерное зрение, слайд №23Интеллектуальные системы. Компьютерное зрение, слайд №24Интеллектуальные системы. Компьютерное зрение, слайд №25Интеллектуальные системы. Компьютерное зрение, слайд №26Интеллектуальные системы. Компьютерное зрение, слайд №27Интеллектуальные системы. Компьютерное зрение, слайд №28Интеллектуальные системы. Компьютерное зрение, слайд №29Интеллектуальные системы. Компьютерное зрение, слайд №30Интеллектуальные системы. Компьютерное зрение, слайд №31Интеллектуальные системы. Компьютерное зрение, слайд №32Интеллектуальные системы. Компьютерное зрение, слайд №33Интеллектуальные системы. Компьютерное зрение, слайд №34Интеллектуальные системы. Компьютерное зрение, слайд №35Интеллектуальные системы. Компьютерное зрение, слайд №36Интеллектуальные системы. Компьютерное зрение, слайд №37Интеллектуальные системы. Компьютерное зрение, слайд №38Интеллектуальные системы. Компьютерное зрение, слайд №39Интеллектуальные системы. Компьютерное зрение, слайд №40Интеллектуальные системы. Компьютерное зрение, слайд №41Интеллектуальные системы. Компьютерное зрение, слайд №42Интеллектуальные системы. Компьютерное зрение, слайд №43Интеллектуальные системы. Компьютерное зрение, слайд №44Интеллектуальные системы. Компьютерное зрение, слайд №45Интеллектуальные системы. Компьютерное зрение, слайд №46Интеллектуальные системы. Компьютерное зрение, слайд №47Интеллектуальные системы. Компьютерное зрение, слайд №48Интеллектуальные системы. Компьютерное зрение, слайд №49Интеллектуальные системы. Компьютерное зрение, слайд №50Интеллектуальные системы. Компьютерное зрение, слайд №51Интеллектуальные системы. Компьютерное зрение, слайд №52Интеллектуальные системы. Компьютерное зрение, слайд №53Интеллектуальные системы. Компьютерное зрение, слайд №54Интеллектуальные системы. Компьютерное зрение, слайд №55Интеллектуальные системы. Компьютерное зрение, слайд №56

Содержание

Вы можете ознакомиться и скачать презентацию на тему Интеллектуальные системы. Компьютерное зрение. Доклад-сообщение содержит 56 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ 

Лекция №17 Компьютерное зрение
Описание слайда:
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ Лекция №17 Компьютерное зрение

Слайд 2





Основные понятия
Компьютерное зрение — теория и технология создания машин, которые могут видеть.
Как научная дисциплина, компьютерное зрение относится к теории и технологии создания искусственных систем, которые получают информацию из изображений. Видеоданные могут быть представлены множеством форм, таких как видеопоследовательность, изображения с различных камер или трехмерными данными с медицинского сканера.
Описание слайда:
Основные понятия Компьютерное зрение — теория и технология создания машин, которые могут видеть. Как научная дисциплина, компьютерное зрение относится к теории и технологии создания искусственных систем, которые получают информацию из изображений. Видеоданные могут быть представлены множеством форм, таких как видеопоследовательность, изображения с различных камер или трехмерными данными с медицинского сканера.

Слайд 3





Примеры применения систем компьютерного зрения
Системы управления процессами (промышленные роботы, автономные транспортные средства)
Системы видеонаблюдения
Системы организации информации (например, для индексации баз данных изображений)
Системы моделирования объектов или окружающей среды (анализ медицинских изображений, топографическое моделирование)
Системы взаимодействия (например, устройства ввода для системы человеко-машинного взаимодействия)
Описание слайда:
Примеры применения систем компьютерного зрения Системы управления процессами (промышленные роботы, автономные транспортные средства) Системы видеонаблюдения Системы организации информации (например, для индексации баз данных изображений) Системы моделирования объектов или окружающей среды (анализ медицинских изображений, топографическое моделирование) Системы взаимодействия (например, устройства ввода для системы человеко-машинного взаимодействия)

Слайд 4





Задача компьютерного зрения
Описание слайда:
Задача компьютерного зрения

Слайд 5


Интеллектуальные системы. Компьютерное зрение, слайд №5
Описание слайда:

Слайд 6


Интеллектуальные системы. Компьютерное зрение, слайд №6
Описание слайда:

Слайд 7





Freddy II, 1973
Описание слайда:
Freddy II, 1973

Слайд 8


Интеллектуальные системы. Компьютерное зрение, слайд №8
Описание слайда:

Слайд 9





Типичные функции систем компьютерного зрения
Получение изображения
Предварительная обработка
Выделение деталей
Детектирование/Сегментация
Высокоуровневая обработка
Описание слайда:
Типичные функции систем компьютерного зрения Получение изображения Предварительная обработка Выделение деталей Детектирование/Сегментация Высокоуровневая обработка

Слайд 10





Сглаживание изображений
Всем устройствам получения изображений присуще наличие шумов в получаемых изображениях. Шумы могут порождаться как самим устройством (шум матрицы, шум обрабатывающих устройств и т.д.), так и носить объективный характер.
Поэтому один из важных этапов в обработке изображения является устранение шумов или сглаживание изображения.
Описание слайда:
Сглаживание изображений Всем устройствам получения изображений присуще наличие шумов в получаемых изображениях. Шумы могут порождаться как самим устройством (шум матрицы, шум обрабатывающих устройств и т.д.), так и носить объективный характер. Поэтому один из важных этапов в обработке изображения является устранение шумов или сглаживание изображения.

Слайд 11





Сглаживание изображений
Один из способов сглаживания изображения состоит в том, чтобы каждому  пикселу присваивалось среднее значение характеристик его соседних пикселов. Такой способ обработки, как правило, исключает экстремальные значения. 
Основная проблема данного способа: сколько нужно рассмотреть соседних пикселей?
Описание слайда:
Сглаживание изображений Один из способов сглаживания изображения состоит в том, чтобы каждому пикселу присваивалось среднее значение характеристик его соседних пикселов. Такой способ обработки, как правило, исключает экстремальные значения. Основная проблема данного способа: сколько нужно рассмотреть соседних пикселей?

Слайд 12





Фильтр с гауссовой характеристикой
Описание слайда:
Фильтр с гауссовой характеристикой

Слайд 13





Применение сглаживания для обнаружения роботом объектов сцены
Обнаружение регионов на изображении без и с использованием фильтра Гаусса
Описание слайда:
Применение сглаживания для обнаружения роботом объектов сцены Обнаружение регионов на изображении без и с использованием фильтра Гаусса

Слайд 14





Обнаружение краев
Края(границы) — это такие кривые на изображении, вдоль которых происходит резкое изменение яркости или других видов неоднородностей. 
Описание слайда:
Обнаружение краев Края(границы) — это такие кривые на изображении, вдоль которых происходит резкое изменение яркости или других видов неоднородностей. 

Слайд 15





Обнаружение краев
Целью  обнаружения краев является повышение уровня абстракции и переход от перегруженного подробностями мультимегабайтового изображения к более компактному, абстрактному представлению. Необходимость в выполнении такой операции обусловлена тем, что линии краев на изображении соответствуют важным контурам в сцене.
Описание слайда:
Обнаружение краев Целью обнаружения краев является повышение уровня абстракции и переход от перегруженного подробностями мультимегабайтового изображения к более компактному, абстрактному представлению. Необходимость в выполнении такой операции обусловлена тем, что линии краев на изображении соответствуют важным контурам в сцене.

Слайд 16





Детектор границ Кенни
Хотя работа Кенни была проведена на заре компьютерного зрения (1986), детектор границ Кенни до сих пор является одним из лучших детекторов.

Основные этапы детектора:
Убрать шум и лишние детали из изображения
Рассчитать градиент изображения
Сделать края тонкими (edge thinning)
Связать края в контура (edge linking)
Описание слайда:
Детектор границ Кенни Хотя работа Кенни была проведена на заре компьютерного зрения (1986), детектор границ Кенни до сих пор является одним из лучших детекторов. Основные этапы детектора: Убрать шум и лишние детали из изображения Рассчитать градиент изображения Сделать края тонкими (edge thinning) Связать края в контура (edge linking)

Слайд 17





Применение метода детектора границ Кенни
реализация отслеживания разделительных полос на  основе библиотеки OpenCV и использование детектора границ Кенни на примере робота-автомобиля от BMW
Описание слайда:
Применение метода детектора границ Кенни реализация отслеживания разделительных полос на основе библиотеки OpenCV и использование детектора границ Кенни на примере робота-автомобиля от BMW

Слайд 18





Вычисление градиента. Оператор Собеля.
Производная (функции в точке) — это скорость изменения функции (в данной точке). 
Работая с изображением I, мы работает с функцией двух переменных I(x,y), т.е. со скалярным полем. Поэтому, более правильно говорить не о производной, а о градиенте изображения.
Градиент (от лат. gradiens — шагающий, растущий) — вектор, показывающий направление наискорейшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой (скалярного поля).
Описание слайда:
Вычисление градиента. Оператор Собеля. Производная (функции в точке) — это скорость изменения функции (в данной точке). Работая с изображением I, мы работает с функцией двух переменных I(x,y), т.е. со скалярным полем. Поэтому, более правильно говорить не о производной, а о градиенте изображения. Градиент (от лат. gradiens — шагающий, растущий) — вектор, показывающий направление наискорейшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой (скалярного поля).

Слайд 19





Вычисление градиента. Оператор Собеля.
Градиент для каждой точки изображения (функция яркости) — двумерный вектор, компонентами которого являются производные яркости изображения по горизонтали и вертикали. 
grad I(x,y) = (dI/dx, dI/dy);
Описание слайда:
Вычисление градиента. Оператор Собеля. Градиент для каждой точки изображения (функция яркости) — двумерный вектор, компонентами которого являются производные яркости изображения по горизонтали и вертикали.  grad I(x,y) = (dI/dx, dI/dy);

Слайд 20





Вычисление градиента. Оператор Собеля.
Оператор Собеля — это дискретный дифференциальный оператор, вычисляющий приближение градиента яркости изображения.
Оператор вычисляет градиент яркости изображения в каждой точке. Так находится направление наибольшего увеличения яркости и величина её изменения в этом направлении. Результат показывает, насколько «резко» или «плавно» меняется яркость изображения в каждой точке, а значит, вероятность нахождения точки на грани, а также ориентацию границы.
Описание слайда:
Вычисление градиента. Оператор Собеля. Оператор Собеля — это дискретный дифференциальный оператор, вычисляющий приближение градиента яркости изображения. Оператор вычисляет градиент яркости изображения в каждой точке. Так находится направление наибольшего увеличения яркости и величина её изменения в этом направлении. Результат показывает, насколько «резко» или «плавно» меняется яркость изображения в каждой точке, а значит, вероятность нахождения точки на грани, а также ориентацию границы.

Слайд 21





Детектор границ Кенни
Границы на изображении могут находиться в различных направлениях, поэтому алгоритм Кенни использует четыре фильтра для выявления горизонтальных, вертикальных и диагональных границ. Воспользовавшись оператором обнаружения границ (например, оператором Собеля) получается значение для первой производной в горизонтальном направлении (Gу) и вертикальном направлении (Gx). 
Из этого градиента можно получить угол направления границы:
Q=arctan(Gx/Gy)
Описание слайда:
Детектор границ Кенни Границы на изображении могут находиться в различных направлениях, поэтому алгоритм Кенни использует четыре фильтра для выявления горизонтальных, вертикальных и диагональных границ. Воспользовавшись оператором обнаружения границ (например, оператором Собеля) получается значение для первой производной в горизонтальном направлении (Gу) и вертикальном направлении (Gx).  Из этого градиента можно получить угол направления границы: Q=arctan(Gx/Gy)

Слайд 22





Детектор границ Кенни
Угол направления границы округляется до одной из четырех углов, представляющих вертикаль, горизонталь и две диагонали (например, 0, 45, 90 и 135 градусов).
Затем идет проверка того, достигает ли величина градиента локального максимума в соответствующем направлении. 
Описание слайда:
Детектор границ Кенни Угол направления границы округляется до одной из четырех углов, представляющих вертикаль, горизонталь и две диагонали (например, 0, 45, 90 и 135 градусов). Затем идет проверка того, достигает ли величина градиента локального максимума в соответствующем направлении. 

Слайд 23





Детектор границ Кенни
Например, для сетки 3x3:
если угол направления градиента равен нулю, точка будет считаться границей, если её интенсивность больше чем у точки выше и ниже рассматриваемой точки,
если угол направления градиента равен 90 градусам, точка будет считаться границей, если её интенсивность больше чем у точки слева и справа рассматриваемой точки,
если угол направления градиента равен 135 градусам, точка будет считаться границей, если её интенсивность больше чем у точек находящихся в верхнем левом и нижнем правом углу от рассматриваемой точки
если угол направления градиента равен 45 градусам, точка будет считаться границей, если её интенсивность больше чем у точек находящихся в верхнем правом и нижнем левом углу от рассматриваемой точки.

Таким образом, получается двоичное изображение, содержащее границы (т.н. «тонкие края»).  
Описание слайда:
Детектор границ Кенни Например, для сетки 3x3: если угол направления градиента равен нулю, точка будет считаться границей, если её интенсивность больше чем у точки выше и ниже рассматриваемой точки, если угол направления градиента равен 90 градусам, точка будет считаться границей, если её интенсивность больше чем у точки слева и справа рассматриваемой точки, если угол направления градиента равен 135 градусам, точка будет считаться границей, если её интенсивность больше чем у точек находящихся в верхнем левом и нижнем правом углу от рассматриваемой точки если угол направления градиента равен 45 градусам, точка будет считаться границей, если её интенсивность больше чем у точек находящихся в верхнем правом и нижнем левом углу от рассматриваемой точки. Таким образом, получается двоичное изображение, содержащее границы (т.н. «тонкие края»).  

Слайд 24





Сегментация изображения
Мозг человека не использует полученные им результаты восприятия в  непосредственном виде, а организует эти результаты определенным образом, поэтому вместо коллекции значений яркости, связанных с отдельными фоторецепторами, мозг  выделяет целый ряд визуальных групп, которые обычно ассоциируются с объектами или частями объектов. 
Сегментация — это процесс разбиения изображения на группы с учетом  подобия характеристик пикселов.
Описание слайда:
Сегментация изображения Мозг человека не использует полученные им результаты восприятия в непосредственном виде, а организует эти результаты определенным образом, поэтому вместо коллекции значений яркости, связанных с отдельными фоторецепторами, мозг выделяет целый ряд визуальных групп, которые обычно ассоциируются с объектами или частями объектов. Сегментация — это процесс разбиения изображения на группы с учетом подобия характеристик пикселов.

Слайд 25





Сегментация изображения
Основная идея сегментаци состоит в следующем: каждый пиксел изображения может быть связан с некоторыми визуальными свойствами, такими как яркость, цвет и текстура. В пределах одного объекта или одной части объекта эти атрибуты изменяются относительно мало, тогда как при переходе через границу от одного объекта к другому обычно происходит существенное  изменение одного или другого из этих атрибутов. Необходимо найти вариант разбиения изображения на такие множества пикселов, что указанные ограничения  удовлетворяются в максимально возможной степени.
Описание слайда:
Сегментация изображения Основная идея сегментаци состоит в следующем: каждый пиксел изображения может быть связан с некоторыми визуальными свойствами, такими как яркость, цвет и текстура. В пределах одного объекта или одной части объекта эти атрибуты изменяются относительно мало, тогда как при переходе через границу от одного объекта к другому обычно происходит существенное изменение одного или другого из этих атрибутов. Необходимо найти вариант разбиения изображения на такие множества пикселов, что указанные ограничения удовлетворяются в максимально возможной степени.

Слайд 26





Сегментация изображения
Процесс сегментации, основанный исключительно на использовании  низкоуровневых локальных атрибутов, таких как яркость и цвет, чреват существенными  ошибками. Чтобы надежно обнаруживать границы, связанные с объектами, необходимо также использовать высокоуровневые знания о том, какого рода объекты могут повсей вероятности встретиться в данной сцене.
Описание слайда:
Сегментация изображения Процесс сегментации, основанный исключительно на использовании низкоуровневых локальных атрибутов, таких как яркость и цвет, чреват существенными ошибками. Чтобы надежно обнаруживать границы, связанные с объектами, необходимо также использовать высокоуровневые знания о том, какого рода объекты могут повсей вероятности встретиться в данной сцене.

Слайд 27





Сегментация изображения
Методы сегментации можно разделить на два класса: 
автоматические – не требующие взаимодействия с пользователем 
интерактивные – использующие пользовательский ввод непосредственно в процессе работы.
Задачи автоматической сегментации делятся на два класса:
выделение областей изображения с известными свойствами
разбиение изображения на однородные области
Описание слайда:
Сегментация изображения Методы сегментации можно разделить на два класса: автоматические – не требующие взаимодействия с пользователем интерактивные – использующие пользовательский ввод непосредственно в процессе работы. Задачи автоматической сегментации делятся на два класса: выделение областей изображения с известными свойствами разбиение изображения на однородные области

Слайд 28





Пример сегментации
Описание слайда:
Пример сегментации

Слайд 29





Оценка качества работы методов сегментации
однородность регионов (однородность цвета или текстуры)
непохожесть соседних регионов
гладкость границы региона
маленькое количество мелких «дырок» внутри региона
и т.д.
Более общий подход к оценке качества работы метода, не учитывающий конкретного приложения, состоит в тестировании методов на общей базе изображений, для которых известна «правильная» сегментация. Например, Berkeley Segmentation Dataset, насчитывает более 1000 изображений, отсегментированных вручную 30 разными людьми.
Описание слайда:
Оценка качества работы методов сегментации однородность регионов (однородность цвета или текстуры) непохожесть соседних регионов гладкость границы региона маленькое количество мелких «дырок» внутри региона и т.д. Более общий подход к оценке качества работы метода, не учитывающий конкретного приложения, состоит в тестировании методов на общей базе изображений, для которых известна «правильная» сегментация. Например, Berkeley Segmentation Dataset, насчитывает более 1000 изображений, отсегментированных вручную 30 разными людьми.

Слайд 30





Кластеризация цветового пространства
В постановке задачи сегментации прослеживается аналогия с задачей кластеризации. Для того чтобы свести задачу сегментации к задаче кластеризации, достаточно задать отображение точек изображения в некоторое пространство признаков и ввести метрику (меру близости) на этом пространстве признаков.
Описание слайда:
Кластеризация цветового пространства В постановке задачи сегментации прослеживается аналогия с задачей кластеризации. Для того чтобы свести задачу сегментации к задаче кластеризации, достаточно задать отображение точек изображения в некоторое пространство признаков и ввести метрику (меру близости) на этом пространстве признаков.

Слайд 31





Кластеризация цветового пространства
В качестве признаков точки изображения можно использовать представление ее цвета в некотором цветовом пространстве, примером метрики (меры близости) может быть евклидово расстояние между векторами в пространстве признаков. Тогда результатом кластеризации будет квантование цвета для изображения. Задав отображение в пространство признаков, можно воспользоваться любыми методами кластерного анализа.
Описание слайда:
Кластеризация цветового пространства В качестве признаков точки изображения можно использовать представление ее цвета в некотором цветовом пространстве, примером метрики (меры близости) может быть евклидово расстояние между векторами в пространстве признаков. Тогда результатом кластеризации будет квантование цвета для изображения. Задав отображение в пространство признаков, можно воспользоваться любыми методами кластерного анализа.

Слайд 32





Кластеризация цветового пространства
Основная проблема методов кластеризации, состоит в том, что пространственное расположение точек либо не учитывается совсем, либо учитывается косвенно (например, используя координаты точки как один из признаков).
Методы кластеризации плохо работают на зашумленных изображениях: часто теряют отдельные точки регионов, образуется много мелких регионов, и. т. п.
Описание слайда:
Кластеризация цветового пространства Основная проблема методов кластеризации, состоит в том, что пространственное расположение точек либо не учитывается совсем, либо учитывается косвенно (например, используя координаты точки как один из признаков). Методы кластеризации плохо работают на зашумленных изображениях: часто теряют отдельные точки регионов, образуется много мелких регионов, и. т. п.

Слайд 33





Кластеризация цветового пространства
Кластеризация позволяет:
лучше понять данные (выявив структурные группы)
компактное хранение данных
выявление новых объектов.
Описание слайда:
Кластеризация цветового пространства Кластеризация позволяет: лучше понять данные (выявив структурные группы) компактное хранение данных выявление новых объектов.

Слайд 34





Метод выращивание регионов
Методы этой группы учитывают пространственное расположение точек напрямую.
Методы выращивания регионов основаны на следующей идее. Сначала по некоторому правилу выбираются центры регионов (seeds), к которым поэтапно присоединяются соседние точки, удовлетворяющих некоторому критерию. Процесс выращивания регионов (region growing) останавливается, когда ни одна точка изображения не может быть присоединена ни к одному региону.
Описание слайда:
Метод выращивание регионов Методы этой группы учитывают пространственное расположение точек напрямую. Методы выращивания регионов основаны на следующей идее. Сначала по некоторому правилу выбираются центры регионов (seeds), к которым поэтапно присоединяются соседние точки, удовлетворяющих некоторому критерию. Процесс выращивания регионов (region growing) останавливается, когда ни одна точка изображения не может быть присоединена ни к одному региону.

Слайд 35





Метод дробления-слияния
Методы дробления-слияния состоят из двух основных этапов: дробления и слияния. Дробление начинается с некоторого разбиения изображения, не обязательно на однородные области. Процесс дробления областей происходит до тех пор, пока не будет получено разбиение изображения (пересегментация), удовлетворяющее свойству однородности сегментов. Затем происходит объединение схожих соседних сегментов до тех пор, пока не будет получено разбиение изображения на однородные области максимального размера.
Описание слайда:
Метод дробления-слияния Методы дробления-слияния состоят из двух основных этапов: дробления и слияния. Дробление начинается с некоторого разбиения изображения, не обязательно на однородные области. Процесс дробления областей происходит до тех пор, пока не будет получено разбиение изображения (пересегментация), удовлетворяющее свойству однородности сегментов. Затем происходит объединение схожих соседних сегментов до тех пор, пока не будет получено разбиение изображения на однородные области максимального размера.

Слайд 36





Пирамиды изображений
Пирамиды изображений - это коллекция изображений, получаемая из исходного изображения путём его последовательного сжимания пока не достигнута точка останова (естественно конечной точкой может быть один пиксель).
Описание слайда:
Пирамиды изображений Пирамиды изображений - это коллекция изображений, получаемая из исходного изображения путём его последовательного сжимания пока не достигнута точка останова (естественно конечной точкой может быть один пиксель).

Слайд 37





Пирамиды изображений
Существует два вида пирамид - пирамиды Гаусса и Лапласа. Пирамиды Гаусса используются для сжимания изображения, а пирамиды Лапласа наоборот для восстановления изображения с повышенной дискретизацией из слоя в пирамиде.
Описание слайда:
Пирамиды изображений Существует два вида пирамид - пирамиды Гаусса и Лапласа. Пирамиды Гаусса используются для сжимания изображения, а пирамиды Лапласа наоборот для восстановления изображения с повышенной дискретизацией из слоя в пирамиде.

Слайд 38





Гауссовская пирамида
Для получения слоя (i+1) в Гауссовской пирамиде (обозначим этот слой Gi+1) из слоя Gi пирамиды, нам необходимо сначала свернуть этот слой с помощью Гауссовского ядра, а затем удалить все чётные строки и столбцы. Из этого следует что каждое последующее изображение будет занимать четверть площади его предшественника.
Описание слайда:
Гауссовская пирамида Для получения слоя (i+1) в Гауссовской пирамиде (обозначим этот слой Gi+1) из слоя Gi пирамиды, нам необходимо сначала свернуть этот слой с помощью Гауссовского ядра, а затем удалить все чётные строки и столбцы. Из этого следует что каждое последующее изображение будет занимать четверть площади его предшественника.

Слайд 39





Пирамида Лапласа
Изображение сначала преобразуется в два раза большее в обоих измерениях, с новыми строками заполненными нулями. А затем выполняется свёртка с заданным фильтром для аппроксимации значений отсутствующих пикселей. Операция получения пирамиды Лапласа не является обратной операции получения гауссовской пирамида. Т.к. в процессе получения каждого нового слоя в пирамиде Гаусса происходит потеря инфорации.
Описание слайда:
Пирамида Лапласа Изображение сначала преобразуется в два раза большее в обоих измерениях, с новыми строками заполненными нулями. А затем выполняется свёртка с заданным фильтром для аппроксимации значений отсутствующих пикселей. Операция получения пирамиды Лапласа не является обратной операции получения гауссовской пирамида. Т.к. в процессе получения каждого нового слоя в пирамиде Гаусса происходит потеря инфорации.

Слайд 40





Пирамидальная сегментации
Операции построения пирамид Гаусса и Лапласа используются для выполнения пирамидальной сегментации. Для этого на каждом новом слое похожие пиксели с предыдущего слоя объединяются в один, далее из нового слоя создаётся ещё один и т.д. до конца.
Описание слайда:
Пирамидальная сегментации Операции построения пирамид Гаусса и Лапласа используются для выполнения пирамидальной сегментации. Для этого на каждом новом слое похожие пиксели с предыдущего слоя объединяются в один, далее из нового слоя создаётся ещё один и т.д. до конца.

Слайд 41





Сегментация преобразованием водораздела
В географии термин водораздел обозначает условную линию, которая разделяет области водосборов разных речных систем. Водосборный бассейн определяет географическую область, вода с которой собирается в одну реку или водохранилище. 
Сегментация преобразованием водораздела применяет эту идею к обработке монохромных изображений при решении задачи сегментации.
Описание слайда:
Сегментация преобразованием водораздела В географии термин водораздел обозначает условную линию, которая разделяет области водосборов разных речных систем. Водосборный бассейн определяет географическую область, вода с которой собирается в одну реку или водохранилище. Сегментация преобразованием водораздела применяет эту идею к обработке монохромных изображений при решении задачи сегментации.

Слайд 42





Сегментация преобразованием водораздела
Описание слайда:
Сегментация преобразованием водораздела

Слайд 43





Виды сегментации по водоразделу
Сегментация по водоразделам с помощью преобразования расстояния 
Сегментация по водоразделам с помощью градиентов 
С использование маркеров при сегментации по водоразделам
Описание слайда:
Виды сегментации по водоразделу Сегментация по водоразделам с помощью преобразования расстояния Сегментация по водоразделам с помощью градиентов С использование маркеров при сегментации по водоразделам

Слайд 44





Поиск объектов на изображении
Детектор Violo-Jones
основополагающий метод для поиска объектов на изображении в реальном времени
обучение очень медленное, но поиск очень быстрый
Описание слайда:
Поиск объектов на изображении Детектор Violo-Jones основополагающий метод для поиска объектов на изображении в реальном времени обучение очень медленное, но поиск очень быстрый

Слайд 45





Детектор Violo-Jones
Основные идеи:
Скользящее окно
Интегральные изображения для быстрого вычисления признаков
Бустинг для выбора признаков
Каскад  для быстрой отбраковки окон без лица
Описание слайда:
Детектор Violo-Jones Основные идеи: Скользящее окно Интегральные изображения для быстрого вычисления признаков Бустинг для выбора признаков Каскад для быстрой отбраковки окон без лица

Слайд 46





Признаки Хаара
Описание слайда:
Признаки Хаара

Слайд 47





Интегральные изображения
Значение каждого пикселя (x,y) равно сумме значений всех пикселей левее и выше пикселя (x,y) включительно
Интегральное изображение рассчитывается за один проход
Описание слайда:
Интегральные изображения Значение каждого пикселя (x,y) равно сумме значений всех пикселей левее и выше пикселя (x,y) включительно Интегральное изображение рассчитывается за один проход

Слайд 48





Вычисление интегрального изображения
Описание слайда:
Вычисление интегрального изображения

Слайд 49





Вычисление суммы в прямоугольнике
Описание слайда:
Вычисление суммы в прямоугольнике

Слайд 50





Пример интегрального изображения
Описание слайда:
Пример интегрального изображения

Слайд 51





Выбор признаков
для окна поиска 24х24 число возможных прямоугольных признаков может достигать ~160000
Описание слайда:
Выбор признаков для окна поиска 24х24 число возможных прямоугольных признаков может достигать ~160000

Слайд 52





Бустинг
Бустинг – схема классификации, основанная на комбинировании слабых классификаторов в более точный
Обучение состоит из нескольких этапов усиления (boosting rounds)
на каждом этапе выбираем слабый классификатор, который лучше всех сработал на примерах, оказавшихся трудными для предыдущих классификаторов
«трудность» записывается с помощью весов, приписанных примерам из обучающей выборки
составляем общий классификатор как линейную комбинацию слабых классификаторов
Описание слайда:
Бустинг Бустинг – схема классификации, основанная на комбинировании слабых классификаторов в более точный Обучение состоит из нескольких этапов усиления (boosting rounds) на каждом этапе выбираем слабый классификатор, который лучше всех сработал на примерах, оказавшихся трудными для предыдущих классификаторов «трудность» записывается с помощью весов, приписанных примерам из обучающей выборки составляем общий классификатор как линейную комбинацию слабых классификаторов

Слайд 53





Бустинг для поиска лиц
первый два признака, выбранные бустингом
Описание слайда:
Бустинг для поиска лиц первый два признака, выбранные бустингом

Слайд 54





Каскад
Начинаем с простых классификаторов, которые отбрасывают часть отрицательных окон, при этом принимаю почти все положительные окна
Положительный отклик первого классификатора запускает вычисление второго, более сложного, классификатора, и т.д.
Отрицательный отклик на любом этапе приводит к немедленной отбраковке окна
Описание слайда:
Каскад Начинаем с простых классификаторов, которые отбрасывают часть отрицательных окон, при этом принимаю почти все положительные окна Положительный отклик первого классификатора запускает вычисление второго, более сложного, классификатора, и т.д. Отрицательный отклик на любом этапе приводит к немедленной отбраковке окна

Слайд 55





Параметры каскада
detection rate и false positive rate каскада вычисляются как произведение соответствующих ошибок каждого этапа
detection rate 0.9 и false positive rate 10-6 достигаются с помощью каскада из 10 этапов, если на каждом этапе detection rate примерно равен 0.99 и false positive rate примерно 0.3
Описание слайда:
Параметры каскада detection rate и false positive rate каскада вычисляются как произведение соответствующих ошибок каждого этапа detection rate 0.9 и false positive rate 10-6 достигаются с помощью каскада из 10 этапов, если на каждом этапе detection rate примерно равен 0.99 и false positive rate примерно 0.3

Слайд 56





Обучение каскада
Задаем требуемые значения detection rate и false positive rate для каждого этапа
Добавляем признаки до тех пор, пока параметры текущего этапа не достигнут заданного уровня
Если общий уровень false positive rate недостаточно низок,  добавляем очередной этап
Ложные обнаружения на текущем этапе используются как отрицательные примеры на следующем этапе
Описание слайда:
Обучение каскада Задаем требуемые значения detection rate и false positive rate для каждого этапа Добавляем признаки до тех пор, пока параметры текущего этапа не достигнут заданного уровня Если общий уровень false positive rate недостаточно низок, добавляем очередной этап Ложные обнаружения на текущем этапе используются как отрицательные примеры на следующем этапе



Похожие презентации
Mypresentation.ru
Загрузить презентацию