🗊Презентация Ионная имплантация

Категория: Физика
Нажмите для полного просмотра!
Ионная имплантация, слайд №1Ионная имплантация, слайд №2Ионная имплантация, слайд №3Ионная имплантация, слайд №4Ионная имплантация, слайд №5Ионная имплантация, слайд №6Ионная имплантация, слайд №7Ионная имплантация, слайд №8Ионная имплантация, слайд №9

Вы можете ознакомиться и скачать презентацию на тему Ионная имплантация. Доклад-сообщение содержит 9 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





ЙОНДЫҚ ЛЕГІРЛЕУ ӘДІСТЕРІ








Шоманов Рустем
Абылхан Абай 
                                        МВ-417
Описание слайда:
ЙОНДЫҚ ЛЕГІРЛЕУ ӘДІСТЕРІ Шоманов Рустем Абылхан Абай МВ-417

Слайд 2





   ЙОНДЫҚ ЛЕГІРЛЕУ 
Ио́нная импланта́ция — способ введения атомов примесей в поверхностный слой пластины или эпитаксиальной пленки путём бомбардировки его поверхности пучком ионов c высокой энергией (10—2000 КэВ).
Широко используется при создании полупроводниковых приборов методом планарной технологии. В этом качестве применяется для образования в приповерхностном слое полупроводника областей с содержанием донорных или акцепторных примесей с целью создания p-n-переходов и гетеропереходов, а также низкоомных контактов.
Ионную имплантацию также применяют как метод легирования металлов для изменения их физических и химических свойств (повышения твердости, износостойкости, коррозионной стойкости и т. д.).
Описание слайда:
ЙОНДЫҚ ЛЕГІРЛЕУ Ио́нная импланта́ция — способ введения атомов примесей в поверхностный слой пластины или эпитаксиальной пленки путём бомбардировки его поверхности пучком ионов c высокой энергией (10—2000 КэВ). Широко используется при создании полупроводниковых приборов методом планарной технологии. В этом качестве применяется для образования в приповерхностном слое полупроводника областей с содержанием донорных или акцепторных примесей с целью создания p-n-переходов и гетеропереходов, а также низкоомных контактов. Ионную имплантацию также применяют как метод легирования металлов для изменения их физических и химических свойств (повышения твердости, износостойкости, коррозионной стойкости и т. д.).

Слайд 3





ЖҰМЫС ЖАСАУ ПРИНЦИПІ
Основными блоками ионно-лучевой установки являются источник ионов (ion source), ионный ускоритель, магнитный сепаратор, система сканирования пучком ионов, и камера, в которой находится бомбардируемый образец (substrate).
Ионы имплантируемого материала разгоняются в электростатическом ускорителе и бомбардируют образец.
Ионы ускоряются до энергий 10-5000кэВ.
Проникновение ионов в глубину образца зависит от их энергии и составляет от нескольких нанометров, до нескольких микрометров.
Ионы с энергией 1-10 кэВ не вызывают изменений в структуре образца, тогда как более энергетичные потоки ионов могут значительно его разрушить.
Описание слайда:
ЖҰМЫС ЖАСАУ ПРИНЦИПІ Основными блоками ионно-лучевой установки являются источник ионов (ion source), ионный ускоритель, магнитный сепаратор, система сканирования пучком ионов, и камера, в которой находится бомбардируемый образец (substrate). Ионы имплантируемого материала разгоняются в электростатическом ускорителе и бомбардируют образец. Ионы ускоряются до энергий 10-5000кэВ. Проникновение ионов в глубину образца зависит от их энергии и составляет от нескольких нанометров, до нескольких микрометров. Ионы с энергией 1-10 кэВ не вызывают изменений в структуре образца, тогда как более энергетичные потоки ионов могут значительно его разрушить.

Слайд 4





ЖҰМЫС ЖАСАУ ПРИНЦИПІ
Ионная имплантация приводит к значительному изменению свойств поверхности по глубине:
слой с измененным химическим составом до 1-9 мкм;
слой с измененной дислокационной структурой до 100 мкм.
Описание слайда:
ЖҰМЫС ЖАСАУ ПРИНЦИПІ Ионная имплантация приводит к значительному изменению свойств поверхности по глубине: слой с измененным химическим составом до 1-9 мкм; слой с измененной дислокационной структурой до 100 мкм.

Слайд 5





  Легирование полупроводников

Ионное легирование широко используется при создании БИС и СБИС. По сравнению с диффузией оно позволяет создавать слои с субмикронными горизонтальными размерами толщиной менее 0,1 мкм с высокой воспроизводимостью параметров.
Ионы элементов, используемых обычно для создания примесной проводимости, внедряясь в кристалл полупроводника занимают в его решетке положение атомов замещения и создают соответствующий тип проводимости. Внедряя ионы III и V групп в монокристалл кремния, можно получить p-n переход в любом месте и на любой площади кристалла.
Описание слайда:
Легирование полупроводников Ионное легирование широко используется при создании БИС и СБИС. По сравнению с диффузией оно позволяет создавать слои с субмикронными горизонтальными размерами толщиной менее 0,1 мкм с высокой воспроизводимостью параметров. Ионы элементов, используемых обычно для создания примесной проводимости, внедряясь в кристалл полупроводника занимают в его решетке положение атомов замещения и создают соответствующий тип проводимости. Внедряя ионы III и V групп в монокристалл кремния, можно получить p-n переход в любом месте и на любой площади кристалла.

Слайд 6





  Цели легирования
Основная цель — изменить тип проводимости и концентрацию носителей в объёме полупроводника для получения заданных свойств (проводимости, получения требуемой плавности p-n-перехода). Самыми распространёнными легирующими примесями для кремния являются фосфор и мышьяк (позволяют получить n-тип проводимости) и бор (p-тип).
Описание слайда:
Цели легирования Основная цель — изменить тип проводимости и концентрацию носителей в объёме полупроводника для получения заданных свойств (проводимости, получения требуемой плавности p-n-перехода). Самыми распространёнными легирующими примесями для кремния являются фосфор и мышьяк (позволяют получить n-тип проводимости) и бор (p-тип).

Слайд 7





ЙОНДЫҚ ЛЕГІРЛЕУ ЭТАПТАРЫ
Ионная имплантация позволяет контролировать параметры приборов более точно, чем термодиффузия, и получать более резкие p-n-переходы. Технологически проходит в несколько этапов:
Загонка (имплантация) атомов примеси из плазмы (газа).
Активация примеси, контроль глубины залегания и плавности p-n-перехода путём отжига.
Ионная имплантация контролируется следующими параметрами:
доза — количество примеси;
энергия — определяет глубину залегания примеси (чем выше, тем глубже);
температура отжига — чем выше, тем быстрее происходит перераспределение носителей примеси;
время отжига — чем дольше, тем сильнее происходит перераспределение примеси.
Описание слайда:
ЙОНДЫҚ ЛЕГІРЛЕУ ЭТАПТАРЫ Ионная имплантация позволяет контролировать параметры приборов более точно, чем термодиффузия, и получать более резкие p-n-переходы. Технологически проходит в несколько этапов: Загонка (имплантация) атомов примеси из плазмы (газа). Активация примеси, контроль глубины залегания и плавности p-n-перехода путём отжига. Ионная имплантация контролируется следующими параметрами: доза — количество примеси; энергия — определяет глубину залегания примеси (чем выше, тем глубже); температура отжига — чем выше, тем быстрее происходит перераспределение носителей примеси; время отжига — чем дольше, тем сильнее происходит перераспределение примеси.

Слайд 8





Термодиффузия
Термодиффузия содержит следующие этапы:
Осаждение легирующего материала.
Термообработка (отжиг) для загонки примеси в легируемый материал.
Удаление легирующего материала.
Описание слайда:
Термодиффузия Термодиффузия содержит следующие этапы: Осаждение легирующего материала. Термообработка (отжиг) для загонки примеси в легируемый материал. Удаление легирующего материала.

Слайд 9





Нейтронно-трансмутационное легирование
При нейтронно-трансмутационном легировании легирующие примеси не вводятся в полупроводник, а образуются («трансмутируют») из атомов исходного вещества (кремний, арсенид галлия) в результате ядерных реакций, вызванных облучением исходного вещества нейтронами. НТЛ позволяет получать монокристаллический кремний с особо равномерным распределением атомов примеси. Метод используется в основном для легирования подложки, особенно для устройств силовой электроники[2].
Когда облучаемым веществом является кремний, под воздействием потока тепловых нейтронов из изотопа кремния 30Si образуется радиоактивный изотоп 31Si, который затем распадается с образованием стабильного изотопа фосфора 31P. Образующийся 31P создаёт проводимость n-типа.
Описание слайда:
Нейтронно-трансмутационное легирование При нейтронно-трансмутационном легировании легирующие примеси не вводятся в полупроводник, а образуются («трансмутируют») из атомов исходного вещества (кремний, арсенид галлия) в результате ядерных реакций, вызванных облучением исходного вещества нейтронами. НТЛ позволяет получать монокристаллический кремний с особо равномерным распределением атомов примеси. Метод используется в основном для легирования подложки, особенно для устройств силовой электроники[2]. Когда облучаемым веществом является кремний, под воздействием потока тепловых нейтронов из изотопа кремния 30Si образуется радиоактивный изотоп 31Si, который затем распадается с образованием стабильного изотопа фосфора 31P. Образующийся 31P создаёт проводимость n-типа.



Похожие презентации
Mypresentation.ru
Загрузить презентацию