🗊 Кинетическая теория газов Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р

Категория: Физика
Нажмите для полного просмотра!
  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №1  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №2  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №3  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №4  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №5  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №6  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №7  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №8  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №9  
  Кинетическая теория газов   Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р, слайд №10

Вы можете ознакомиться и скачать Кинетическая теория газов Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем р. Презентация содержит 10 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Кинетическая теория газов 
Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем размеры самих молекул, а силы взаимодействия между молекулами достаточно быстро убывают с расстоянием. Поэтому, в статистической физике пользуются моделью идеального газа, которая предполагает следующие приближения. Предполагается, что суммарным объемом молекул можно пренебречь по сравнению с объемом сосуда, в котором находится газ.
Описание слайда:
Кинетическая теория газов Расстояние между молекулами вещества, находящегося в газовой фазе обычно значительно больше, чем размеры самих молекул, а силы взаимодействия между молекулами достаточно быстро убывают с расстоянием. Поэтому, в статистической физике пользуются моделью идеального газа, которая предполагает следующие приближения. Предполагается, что суммарным объемом молекул можно пренебречь по сравнению с объемом сосуда, в котором находится газ.

Слайд 2





Кроме того, предполагается, что между молекулами отсутствуют дальнодействующие силы взаимодействия, взаимодействие между молекулами проявляется только в момент столкновений, которые считаются абсолютно упругими. Модель идеального газа достаточно хорошо описывает поведение газовых сред при низких давлениях и высоких температурах, в области же высоких давлений и низких температур используются другие, более точные модели. 
Кроме того, предполагается, что между молекулами отсутствуют дальнодействующие силы взаимодействия, взаимодействие между молекулами проявляется только в момент столкновений, которые считаются абсолютно упругими. Модель идеального газа достаточно хорошо описывает поведение газовых сред при низких давлениях и высоких температурах, в области же высоких давлений и низких температур используются другие, более точные модели.
Описание слайда:
Кроме того, предполагается, что между молекулами отсутствуют дальнодействующие силы взаимодействия, взаимодействие между молекулами проявляется только в момент столкновений, которые считаются абсолютно упругими. Модель идеального газа достаточно хорошо описывает поведение газовых сред при низких давлениях и высоких температурах, в области же высоких давлений и низких температур используются другие, более точные модели. Кроме того, предполагается, что между молекулами отсутствуют дальнодействующие силы взаимодействия, взаимодействие между молекулами проявляется только в момент столкновений, которые считаются абсолютно упругими. Модель идеального газа достаточно хорошо описывает поведение газовых сред при низких давлениях и высоких температурах, в области же высоких давлений и низких температур используются другие, более точные модели.

Слайд 3





Вычислим, в рамках модели идеального газа, давление, оказываемое газом на стенки сосуда. Определим давление как величину, равную отношению силы, действующей со стороны газа на стенку площадью  к этой площади:
Вычислим, в рамках модели идеального газа, давление, оказываемое газом на стенки сосуда. Определим давление как величину, равную отношению силы, действующей со стороны газа на стенку площадью  к этой площади:
.                                                                 (2.1)vx·τdxРис. 13SPS
Единицей измерения давления в системе СИ является паскаль (Па) – 1 Па = 1 Н/м2.
Описание слайда:
Вычислим, в рамках модели идеального газа, давление, оказываемое газом на стенки сосуда. Определим давление как величину, равную отношению силы, действующей со стороны газа на стенку площадью к этой площади: Вычислим, в рамках модели идеального газа, давление, оказываемое газом на стенки сосуда. Определим давление как величину, равную отношению силы, действующей со стороны газа на стенку площадью к этой площади: . (2.1)vx·τdxРис. 13SPS Единицей измерения давления в системе СИ является паскаль (Па) – 1 Па = 1 Н/м2.

Слайд 4





С точки зрения молекулярно-кинетической теории давление – результат большого числа ударов молекул газа о стенки сосуда. Пусть в сосуде с объемом  находится  молекул. Будем считать удары молекул о стенку упругими. Тогда компонента импульса молекулы в направлении «вдоль стенки» не изменяется при ударе, а в направлении перпендикулярном стенке изменяется на противоположную. Таким образом, каждая молекула при ударе передает стенке импульс , если обозначить через х направление перпендикулярное стенке. 
С точки зрения молекулярно-кинетической теории давление – результат большого числа ударов молекул газа о стенки сосуда. Пусть в сосуде с объемом  находится  молекул. Будем считать удары молекул о стенку упругими. Тогда компонента импульса молекулы в направлении «вдоль стенки» не изменяется при ударе, а в направлении перпендикулярном стенке изменяется на противоположную. Таким образом, каждая молекула при ударе передает стенке импульс , если обозначить через х направление перпендикулярное стенке.
Описание слайда:
С точки зрения молекулярно-кинетической теории давление – результат большого числа ударов молекул газа о стенки сосуда. Пусть в сосуде с объемом находится молекул. Будем считать удары молекул о стенку упругими. Тогда компонента импульса молекулы в направлении «вдоль стенки» не изменяется при ударе, а в направлении перпендикулярном стенке изменяется на противоположную. Таким образом, каждая молекула при ударе передает стенке импульс , если обозначить через х направление перпендикулярное стенке. С точки зрения молекулярно-кинетической теории давление – результат большого числа ударов молекул газа о стенки сосуда. Пусть в сосуде с объемом находится молекул. Будем считать удары молекул о стенку упругими. Тогда компонента импульса молекулы в направлении «вдоль стенки» не изменяется при ударе, а в направлении перпендикулярном стенке изменяется на противоположную. Таким образом, каждая молекула при ударе передает стенке импульс , если обозначить через х направление перпендикулярное стенке.

Слайд 5





Найдем теперь число ударов молекул о стенку за время . Очевидно, что за время  о стенку могут удариться только те молекулы, которые находятся от нее на расстоянии не превышающем  (рис.13). Эти молекулы занимают объем , и если считать, что к стенке и от нее движется одинаковое число молекул, то количество ударившихся о стенку молекул равно половине полного количества молекул в этом объеме. Значит суммарный импульс, который молекулы передают стенке за время , равен:
Найдем теперь число ударов молекул о стенку за время . Очевидно, что за время  о стенку могут удариться только те молекулы, которые находятся от нее на расстоянии не превышающем  (рис.13). Эти молекулы занимают объем , и если считать, что к стенке и от нее движется одинаковое число молекул, то количество ударившихся о стенку молекул равно половине полного количества молекул в этом объеме. Значит суммарный импульс, который молекулы передают стенке за время , равен:
Описание слайда:
Найдем теперь число ударов молекул о стенку за время . Очевидно, что за время о стенку могут удариться только те молекулы, которые находятся от нее на расстоянии не превышающем (рис.13). Эти молекулы занимают объем , и если считать, что к стенке и от нее движется одинаковое число молекул, то количество ударившихся о стенку молекул равно половине полного количества молекул в этом объеме. Значит суммарный импульс, который молекулы передают стенке за время , равен: Найдем теперь число ударов молекул о стенку за время . Очевидно, что за время о стенку могут удариться только те молекулы, которые находятся от нее на расстоянии не превышающем (рис.13). Эти молекулы занимают объем , и если считать, что к стенке и от нее движется одинаковое число молекул, то количество ударившихся о стенку молекул равно половине полного количества молекул в этом объеме. Значит суммарный импульс, который молекулы передают стенке за время , равен:

Слайд 6





Сила, действующая на стенку равна импульсу, переданному стенке за единицу времени . Значит, давление
Сила, действующая на стенку равна импульсу, переданному стенке за единицу времени . Значит, давление
.                                                           (2.2)
Теперь надо учесть, что не все молекулы движутся с одинаковыми скоростями. Поэтому произведение  в (2.2) нужно заменить средним произведением , усредненным по всем молекулам:
.                                                               (2.3)
Описание слайда:
Сила, действующая на стенку равна импульсу, переданному стенке за единицу времени . Значит, давление Сила, действующая на стенку равна импульсу, переданному стенке за единицу времени . Значит, давление . (2.2) Теперь надо учесть, что не все молекулы движутся с одинаковыми скоростями. Поэтому произведение в (2.2) нужно заменить средним произведением , усредненным по всем молекулам: . (2.3)

Слайд 7





Рассмотрим скалярное произведение . Поскольку «х – направление» ничем не выделено, . Подставляя это значение в (2.3), получим:
Рассмотрим скалярное произведение . Поскольку «х – направление» ничем не выделено, . Подставляя это значение в (2.3), получим:
.                                                               (2.4)
Импульс молекулы , значит . С учетом этого (2.4) можно переписать в виде:
.                                                             (2.5)
Это выражение (в виде (2.5), или в более общем виде (2.4)) называется основным уравнением молекулярно-кинетической теории идеальных газов.
Описание слайда:
Рассмотрим скалярное произведение . Поскольку «х – направление» ничем не выделено, . Подставляя это значение в (2.3), получим: Рассмотрим скалярное произведение . Поскольку «х – направление» ничем не выделено, . Подставляя это значение в (2.3), получим: . (2.4) Импульс молекулы , значит . С учетом этого (2.4) можно переписать в виде: . (2.5) Это выражение (в виде (2.5), или в более общем виде (2.4)) называется основным уравнением молекулярно-кинетической теории идеальных газов.

Слайд 8





Если теперь учесть, что величина  представляет собой среднюю кинетическую энергию поступательного движения молекулы газа, а  - это полная кинетическая энергия поступательного движения всех молекул, то
Если теперь учесть, что величина  представляет собой среднюю кинетическую энергию поступательного движения молекулы газа, а  - это полная кинетическая энергия поступательного движения всех молекул, то
    или     .
Описание слайда:
Если теперь учесть, что величина представляет собой среднюю кинетическую энергию поступательного движения молекулы газа, а - это полная кинетическая энергия поступательного движения всех молекул, то Если теперь учесть, что величина представляет собой среднюю кинетическую энергию поступательного движения молекулы газа, а - это полная кинетическая энергия поступательного движения всех молекул, то или .

Слайд 9





Определим полную внутреннюю энергию газа  как суммарную энергию движения всех атомов газа. (При этом мы не берем в расчет энергию движения газа как целого и энергию его во внешних полях, например в поле тяжести.) Полная внутренняя энергия в общем случае не совпадает с - полной кинетической энергией поступательного движения молекул, так как газ может состоять из сложных молекул, в которых могут быть внутренние движения – вращения, колебания и т.д., поэтому в общем случае . 
Определим полную внутреннюю энергию газа  как суммарную энергию движения всех атомов газа. (При этом мы не берем в расчет энергию движения газа как целого и энергию его во внешних полях, например в поле тяжести.) Полная внутренняя энергия в общем случае не совпадает с - полной кинетической энергией поступательного движения молекул, так как газ может состоять из сложных молекул, в которых могут быть внутренние движения – вращения, колебания и т.д., поэтому в общем случае .
Описание слайда:
Определим полную внутреннюю энергию газа как суммарную энергию движения всех атомов газа. (При этом мы не берем в расчет энергию движения газа как целого и энергию его во внешних полях, например в поле тяжести.) Полная внутренняя энергия в общем случае не совпадает с - полной кинетической энергией поступательного движения молекул, так как газ может состоять из сложных молекул, в которых могут быть внутренние движения – вращения, колебания и т.д., поэтому в общем случае . Определим полную внутреннюю энергию газа как суммарную энергию движения всех атомов газа. (При этом мы не берем в расчет энергию движения газа как целого и энергию его во внешних полях, например в поле тяжести.) Полная внутренняя энергия в общем случае не совпадает с - полной кинетической энергией поступательного движения молекул, так как газ может состоять из сложных молекул, в которых могут быть внутренние движения – вращения, колебания и т.д., поэтому в общем случае .

Слайд 10





Можно считать, что молекулы одноатомных газов, таких как гелий или аргон, не имеют внутренних степеней свободы, для этих газов внутренняя энергия совпадает с энергией поступательного движения т.е. . Для таких газов (2.6) можно записать в виде
Можно считать, что молекулы одноатомных газов, таких как гелий или аргон, не имеют внутренних степеней свободы, для этих газов внутренняя энергия совпадает с энергией поступательного движения т.е. . Для таких газов (2.6) можно записать в виде
.                                                               (2.7)
Описание слайда:
Можно считать, что молекулы одноатомных газов, таких как гелий или аргон, не имеют внутренних степеней свободы, для этих газов внутренняя энергия совпадает с энергией поступательного движения т.е. . Для таких газов (2.6) можно записать в виде Можно считать, что молекулы одноатомных газов, таких как гелий или аргон, не имеют внутренних степеней свободы, для этих газов внутренняя энергия совпадает с энергией поступательного движения т.е. . Для таких газов (2.6) можно записать в виде . (2.7)



Похожие презентации
Mypresentation.ru
Загрузить презентацию