🗊Классическое определение вероятности Решение задач.

Категория: Физика
Нажмите для полного просмотра!
Классическое определение вероятности  Решение задач., слайд №1Классическое определение вероятности  Решение задач., слайд №2Классическое определение вероятности  Решение задач., слайд №3Классическое определение вероятности  Решение задач., слайд №4Классическое определение вероятности  Решение задач., слайд №5Классическое определение вероятности  Решение задач., слайд №6Классическое определение вероятности  Решение задач., слайд №7Классическое определение вероятности  Решение задач., слайд №8Классическое определение вероятности  Решение задач., слайд №9Классическое определение вероятности  Решение задач., слайд №10Классическое определение вероятности  Решение задач., слайд №11Классическое определение вероятности  Решение задач., слайд №12Классическое определение вероятности  Решение задач., слайд №13Классическое определение вероятности  Решение задач., слайд №14

Вы можете ознакомиться и скачать Классическое определение вероятности Решение задач.. Презентация содержит 14 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Классическое определение вероятности
Решение задач.
Описание слайда:
Классическое определение вероятности Решение задач.

Слайд 2





Заполните таблицу:
Описание слайда:
Заполните таблицу:

Слайд 3





Практикум по решению задач. 
Таня забыла последнюю цифру номера телефона знакомой девочки и набрала ее наугад. Какова вероятность того, что Таня попала к своей знакомой?
Решение.
Описание слайда:
Практикум по решению задач. Таня забыла последнюю цифру номера телефона знакомой девочки и набрала ее наугад. Какова вероятность того, что Таня попала к своей знакомой? Решение.

Слайд 4





Практикум по решению задач. 
На четырех карточках написаны буквы О, Т, К, Р. Карточки перевернули и перемешали. Затем открыли наугад последовательно эти карточки и положили в ряд. Какова вероятность того, что получится слово «КРОТ»?
Решение.
Исходы – все возможные перестановки из четырех элементов (О, Т, К, Р); общее число исходов: 

Событие А = {после открытия карточек получится слово «КРОТ»}:
Описание слайда:
Практикум по решению задач. На четырех карточках написаны буквы О, Т, К, Р. Карточки перевернули и перемешали. Затем открыли наугад последовательно эти карточки и положили в ряд. Какова вероятность того, что получится слово «КРОТ»? Решение. Исходы – все возможные перестановки из четырех элементов (О, Т, К, Р); общее число исходов: Событие А = {после открытия карточек получится слово «КРОТ»}:

Слайд 5





Практикум по решению задач. 
На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123;  б) число 312 или 321;  в) число, первая цифра которого 2?
Решение. 
Исходами опыта являются все возможные размещения четырех карточек на трех местах (порядок расположения важен). Общее число исходов:
Описание слайда:
Практикум по решению задач. На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение. Исходами опыта являются все возможные размещения четырех карточек на трех местах (порядок расположения важен). Общее число исходов:

Слайд 6





Практикум по решению задач. 
На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123;  б) число 312 или 321;  в) число, первая цифра которого 2?
Решение.
Описание слайда:
Практикум по решению задач. На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение.

Слайд 7





Практикум по решению задач. 
На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123;  б) число 312 или 321;  в) число, первая цифра которого 2?
Решение.
Описание слайда:
Практикум по решению задач. На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение.

Слайд 8





Практикум по решению задач. 
На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123;  б) число 312 или 321;  в) число, первая цифра которого 2?
Решение.
Описание слайда:
Практикум по решению задач. На четырех карточках написаны цифры 1, 2, 3, 4. Карточки перевернули и перемешали. Затем открыли наугад последовательно три карточки и положили в ряд. Какова вероятность того, что в результате получилось: а) число 123; б) число 312 или 321; в) число, первая цифра которого 2? Решение.

Слайд 9





Практикум по решению задач. 
В ящике лежат 1 белый и три черных шара. Наугад вынимаются 2 шара. Какова вероятность того, что вынуты: 1) 2 черных шара; 2) белый и черный шар? 
Решение. 
Исходы – все возможные пары шаров. Общее число исходов

1) Событие А={вынуты два черных шара}; 


2) Событие В={вынуты белый и черный шары};
Описание слайда:
Практикум по решению задач. В ящике лежат 1 белый и три черных шара. Наугад вынимаются 2 шара. Какова вероятность того, что вынуты: 1) 2 черных шара; 2) белый и черный шар? Решение. Исходы – все возможные пары шаров. Общее число исходов 1) Событие А={вынуты два черных шара}; 2) Событие В={вынуты белый и черный шары};

Слайд 10





Практикум по решению задач. 
Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная.
Решение. 

1) А={ обе выбранные буквы – согласные}. В русском языке 21 согласная буква, 10 гласных и 2 буквы («ь», «ъ») не обозначающие звуков.
Описание слайда:
Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 1) А={ обе выбранные буквы – согласные}. В русском языке 21 согласная буква, 10 гласных и 2 буквы («ь», «ъ») не обозначающие звуков.

Слайд 11





Практикум по решению задач. 
Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная.
Решение. 

2) В={среди выбранных букв есть «ъ»}.
Описание слайда:
Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 2) В={среди выбранных букв есть «ъ»}.

Слайд 12





Практикум по решению задач. 
Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная.
Решение. 

3) С={среди выбранных букв нет «ъ»}.
Описание слайда:
Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 3) С={среди выбранных букв нет «ъ»}.

Слайд 13





Практикум по решению задач. 
Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная.
Решение. 

4) D={среди выбранных букв одна буква гласная, а другая согласная}.
Описание слайда:
Практикум по решению задач. Cлучайным образом одновременно выбираются две буквы из 33 букв русского алфавита. Найдите вероятность того, что: 1) обе они согласные; 2) среди них есть «ъ»; 3) среди них нет «ъ»; 4) одна буква гласная, а другая согласная. Решение. 4) D={среди выбранных букв одна буква гласная, а другая согласная}.

Слайд 14





Домашнее задание:
Задача 1. Набирая номер телефона, состоящий из 7 цифр, абонент забыл, в какой последовательности идут три последние цифры. Помня лишь, что это цифры 1, 5 и 9, он набрал первые четыре цифры, которые знал, и наугад комбинацию из цифр !, 5 и 9. Какова вероятность того, что абонент набрал правильный номер?
Задача 2. На каждой карточке написана одна из букв О, П, Р, С, Т. Несколько карточек наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании:
а) 3-х карточек получится слово РОТ;
б) 4-х карточек получится слово СОРТ;
в) 5-ти карточек получится слово СПОРТ?
Задача 3. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все три тетради окажутся в клетку?
Описание слайда:
Домашнее задание: Задача 1. Набирая номер телефона, состоящий из 7 цифр, абонент забыл, в какой последовательности идут три последние цифры. Помня лишь, что это цифры 1, 5 и 9, он набрал первые четыре цифры, которые знал, и наугад комбинацию из цифр !, 5 и 9. Какова вероятность того, что абонент набрал правильный номер? Задача 2. На каждой карточке написана одна из букв О, П, Р, С, Т. Несколько карточек наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании: а) 3-х карточек получится слово РОТ; б) 4-х карточек получится слово СОРТ; в) 5-ти карточек получится слово СПОРТ? Задача 3. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все три тетради окажутся в клетку?



Похожие презентации
Mypresentation.ru
Загрузить презентацию