🗊Презентация Когнитивные гибридные системы поддержки принятия решений

Нажмите для полного просмотра!
Когнитивные гибридные системы поддержки принятия решений, слайд №1Когнитивные гибридные системы поддержки принятия решений, слайд №2Когнитивные гибридные системы поддержки принятия решений, слайд №3Когнитивные гибридные системы поддержки принятия решений, слайд №4Когнитивные гибридные системы поддержки принятия решений, слайд №5Когнитивные гибридные системы поддержки принятия решений, слайд №6Когнитивные гибридные системы поддержки принятия решений, слайд №7Когнитивные гибридные системы поддержки принятия решений, слайд №8Когнитивные гибридные системы поддержки принятия решений, слайд №9Когнитивные гибридные системы поддержки принятия решений, слайд №10Когнитивные гибридные системы поддержки принятия решений, слайд №11Когнитивные гибридные системы поддержки принятия решений, слайд №12Когнитивные гибридные системы поддержки принятия решений, слайд №13Когнитивные гибридные системы поддержки принятия решений, слайд №14Когнитивные гибридные системы поддержки принятия решений, слайд №15Когнитивные гибридные системы поддержки принятия решений, слайд №16Когнитивные гибридные системы поддержки принятия решений, слайд №17Когнитивные гибридные системы поддержки принятия решений, слайд №18Когнитивные гибридные системы поддержки принятия решений, слайд №19Когнитивные гибридные системы поддержки принятия решений, слайд №20Когнитивные гибридные системы поддержки принятия решений, слайд №21Когнитивные гибридные системы поддержки принятия решений, слайд №22Когнитивные гибридные системы поддержки принятия решений, слайд №23Когнитивные гибридные системы поддержки принятия решений, слайд №24Когнитивные гибридные системы поддержки принятия решений, слайд №25Когнитивные гибридные системы поддержки принятия решений, слайд №26Когнитивные гибридные системы поддержки принятия решений, слайд №27Когнитивные гибридные системы поддержки принятия решений, слайд №28Когнитивные гибридные системы поддержки принятия решений, слайд №29Когнитивные гибридные системы поддержки принятия решений, слайд №30Когнитивные гибридные системы поддержки принятия решений, слайд №31Когнитивные гибридные системы поддержки принятия решений, слайд №32Когнитивные гибридные системы поддержки принятия решений, слайд №33Когнитивные гибридные системы поддержки принятия решений, слайд №34Когнитивные гибридные системы поддержки принятия решений, слайд №35Когнитивные гибридные системы поддержки принятия решений, слайд №36Когнитивные гибридные системы поддержки принятия решений, слайд №37Когнитивные гибридные системы поддержки принятия решений, слайд №38Когнитивные гибридные системы поддержки принятия решений, слайд №39Когнитивные гибридные системы поддержки принятия решений, слайд №40Когнитивные гибридные системы поддержки принятия решений, слайд №41Когнитивные гибридные системы поддержки принятия решений, слайд №42Когнитивные гибридные системы поддержки принятия решений, слайд №43Когнитивные гибридные системы поддержки принятия решений, слайд №44Когнитивные гибридные системы поддержки принятия решений, слайд №45Когнитивные гибридные системы поддержки принятия решений, слайд №46Когнитивные гибридные системы поддержки принятия решений, слайд №47Когнитивные гибридные системы поддержки принятия решений, слайд №48Когнитивные гибридные системы поддержки принятия решений, слайд №49Когнитивные гибридные системы поддержки принятия решений, слайд №50Когнитивные гибридные системы поддержки принятия решений, слайд №51Когнитивные гибридные системы поддержки принятия решений, слайд №52Когнитивные гибридные системы поддержки принятия решений, слайд №53Когнитивные гибридные системы поддержки принятия решений, слайд №54Когнитивные гибридные системы поддержки принятия решений, слайд №55Когнитивные гибридные системы поддержки принятия решений, слайд №56Когнитивные гибридные системы поддержки принятия решений, слайд №57Когнитивные гибридные системы поддержки принятия решений, слайд №58Когнитивные гибридные системы поддержки принятия решений, слайд №59Когнитивные гибридные системы поддержки принятия решений, слайд №60Когнитивные гибридные системы поддержки принятия решений, слайд №61Когнитивные гибридные системы поддержки принятия решений, слайд №62Когнитивные гибридные системы поддержки принятия решений, слайд №63Когнитивные гибридные системы поддержки принятия решений, слайд №64Когнитивные гибридные системы поддержки принятия решений, слайд №65Когнитивные гибридные системы поддержки принятия решений, слайд №66Когнитивные гибридные системы поддержки принятия решений, слайд №67Когнитивные гибридные системы поддержки принятия решений, слайд №68Когнитивные гибридные системы поддержки принятия решений, слайд №69Когнитивные гибридные системы поддержки принятия решений, слайд №70Когнитивные гибридные системы поддержки принятия решений, слайд №71Когнитивные гибридные системы поддержки принятия решений, слайд №72Когнитивные гибридные системы поддержки принятия решений, слайд №73

Содержание

Вы можете ознакомиться и скачать презентацию на тему Когнитивные гибридные системы поддержки принятия решений. Доклад-сообщение содержит 73 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1














Когнитивные гибридные системы поддержки принятия решений  



 
Аверкин Алексей Николаевич , к.ф.-м.н.,в.н.с. ВЦ РАН, т.89104227182, факс 84991351509,
e-mail: averkin2003@inbox.ru
Описание слайда:
Когнитивные гибридные системы поддержки принятия решений   Аверкин Алексей Николаевич , к.ф.-м.н.,в.н.с. ВЦ РАН, т.89104227182, факс 84991351509, e-mail: averkin2003@inbox.ru

Слайд 2





Когнитивная наука
Когнитивистика (когнитивная наука) (лат. cognitio — познание) — междисциплинарное научное направление, объединяющее теорию познания, когнитивную психологию, нейрофизиологию, когнитивную лингвистику и теорию искусственного интеллекта.
Описание слайда:
Когнитивная наука Когнитивистика (когнитивная наука) (лат. cognitio — познание) — междисциплинарное научное направление, объединяющее теорию познания, когнитивную психологию, нейрофизиологию, когнитивную лингвистику и теорию искусственного интеллекта.

Слайд 3





Когнитивная наука
Когнитивная наука – исследование разума  и разумных систем, при котором разумное поведение рассматривается как разновидность вычисления. От предшествующих подходов к когниции ее отличает степень проникновения идей и техник «вычисления». 
У истоков когнитологии, как науки, стояли психологи Дж. Миллер и Дж. Брунер,  кибернетики Нобелевский лауреат Г. Саймон и Дж. Маккарти. Но только в последнее десятилетие созрели социально-экономические и технологические условия востребованности  этой области знаний для решения  гуманитарных, энергетических и экологических проблем человечества.
Описание слайда:
Когнитивная наука Когнитивная наука – исследование разума и разумных систем, при котором разумное поведение рассматривается как разновидность вычисления. От предшествующих подходов к когниции ее отличает степень проникновения идей и техник «вычисления». У истоков когнитологии, как науки, стояли психологи Дж. Миллер и Дж. Брунер, кибернетики Нобелевский лауреат Г. Саймон и Дж. Маккарти. Но только в последнее десятилетие созрели социально-экономические и технологические условия востребованности этой области знаний для решения гуманитарных, энергетических и экологических проблем человечества.

Слайд 4





Когнитивная наука
Описание слайда:
Когнитивная наука

Слайд 5


Когнитивные гибридные системы поддержки принятия решений, слайд №5
Описание слайда:

Слайд 6





Сильный и слабый ИИ
В философии искусственного интеллекта (ИИ) спор сильного ИИ (Джон Сёрль) против слабого ИИ протекает вокруг гипотезы о том, что некоторые формы искусственного интеллекта могут действительно обосновывать и решать проблемы. Теория сильного ИИ предполагает, что компьютеры могут приобрести способность мыслить и осознавать себя, хотя и не обязательно их мыслительный процесс будет подобен человеческому. Теория слабого ИИ такую возможность отвергает.
Описание слайда:
Сильный и слабый ИИ В философии искусственного интеллекта (ИИ) спор сильного ИИ (Джон Сёрль) против слабого ИИ протекает вокруг гипотезы о том, что некоторые формы искусственного интеллекта могут действительно обосновывать и решать проблемы. Теория сильного ИИ предполагает, что компьютеры могут приобрести способность мыслить и осознавать себя, хотя и не обязательно их мыслительный процесс будет подобен человеческому. Теория слабого ИИ такую возможность отвергает.

Слайд 7





Цель когнитивной науки
Ключевым техническим достижением, сделавшим когнитивистику возможной, стали новые методы сканирования мозга. Томография и другие методы впервые позволили заглянуть внутрь мозга и получить прямые, а не косвенные данные о его работе. Наблюдаемый сейчас прогресс в когнитивистике позволит  описать и объяснить процессы в мозгу человека, ответственные за высшую нервную деятельность. Это позволит создать системы так называемого сильного искусственного интеллекта, который будет обладать способностями к самостоятельному обучению, творчеству, свободному общению с человеком
Описание слайда:
Цель когнитивной науки Ключевым техническим достижением, сделавшим когнитивистику возможной, стали новые методы сканирования мозга. Томография и другие методы впервые позволили заглянуть внутрь мозга и получить прямые, а не косвенные данные о его работе. Наблюдаемый сейчас прогресс в когнитивистике позволит описать и объяснить процессы в мозгу человека, ответственные за высшую нервную деятельность. Это позволит создать системы так называемого сильного искусственного интеллекта, который будет обладать способностями к самостоятельному обучению, творчеству, свободному общению с человеком

Слайд 8


Когнитивные гибридные системы поддержки принятия решений, слайд №8
Описание слайда:

Слайд 9





Когнитивная наука
Область междисциплинарных исследований познания, понимаемого как совокупность процессов приобретения, хранения, преобразования и использования знаний живыми и искусственными системами. Аппаратными и программными средствами для когнитивной науки, общими для всех ее областей, являются методы матмоделирования на основе биоморфных нейронных сетей. В отличие от классических нейросетей используются нейросети рекуррентные, модулярные,  асссихронные, с немонотонной активационной функцией и т.д. и нейроморфный искусственный интеллект.
Описание слайда:
Когнитивная наука Область междисциплинарных исследований познания, понимаемого как совокупность процессов приобретения, хранения, преобразования и использования знаний живыми и искусственными системами. Аппаратными и программными средствами для когнитивной науки, общими для всех ее областей, являются методы матмоделирования на основе биоморфных нейронных сетей. В отличие от классических нейросетей используются нейросети рекуррентные, модулярные, асссихронные, с немонотонной активационной функцией и т.д. и нейроморфный искусственный интеллект.

Слайд 10


Когнитивные гибридные системы поддержки принятия решений, слайд №10
Описание слайда:

Слайд 11


Когнитивные гибридные системы поддержки принятия решений, слайд №11
Описание слайда:

Слайд 12





3D визуальная лаборатория сканирования мозга человека
Описание слайда:
3D визуальная лаборатория сканирования мозга человека

Слайд 13





Феномен NBIC-конвергенции
Описание слайда:
Феномен NBIC-конвергенции

Слайд 14





NBIC-конвергенция
NBIC-конвергенция (по первым буквам областей: N -нано; B -био; I -инфо; C -когно). Термин введен в 2002 г . Михаилом Роко и Уильямом Бейнбриджем, авторами отчета Конвергенция технологий для повышения человеческой производительности, подготовленного 2006 г . в Всемирном центре оценки технологий (WTEC)
Описание слайда:
NBIC-конвергенция NBIC-конвергенция (по первым буквам областей: N -нано; B -био; I -инфо; C -когно). Термин введен в 2002 г . Михаилом Роко и Уильямом Бейнбриджем, авторами отчета Конвергенция технологий для повышения человеческой производительности, подготовленного 2006 г . в Всемирном центре оценки технологий (WTEC)

Слайд 15


Когнитивные гибридные системы поддержки принятия решений, слайд №15
Описание слайда:

Слайд 16


Когнитивные гибридные системы поддержки принятия решений, слайд №16
Описание слайда:

Слайд 17


Когнитивные гибридные системы поддержки принятия решений, слайд №17
Описание слайда:

Слайд 18





 SyNAPSE 
 На конец 2011 года DARPA, которая в своем проекте SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) рассчитывала к 2015 году создать прототип чипа, моделирующего 10 млрд нейронов, соединенных 1 трлн синапсов, и при этом потреблять менее 1киловатта энергии и занимать в объеме менее 2 литров.
 Dharmendra Modha, ведущий исследователь IBM по проекту SyNAPSE, сравнил представленную симуляцию с электронным микроскопом или ускорителем частиц: "Это инструмент, который другие исследователи теперь могут использовать для того, чтобы лучше понять, как протекают мыслительные процессы в мозгу".
IBM рассчитывала создать полную модель кортекса к 2019.
Описание слайда:
 SyNAPSE На конец 2011 года DARPA, которая в своем проекте SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) рассчитывала к 2015 году создать прототип чипа, моделирующего 10 млрд нейронов, соединенных 1 трлн синапсов, и при этом потреблять менее 1киловатта энергии и занимать в объеме менее 2 литров.  Dharmendra Modha, ведущий исследователь IBM по проекту SyNAPSE, сравнил представленную симуляцию с электронным микроскопом или ускорителем частиц: "Это инструмент, который другие исследователи теперь могут использовать для того, чтобы лучше понять, как протекают мыслительные процессы в мозгу". IBM рассчитывала создать полную модель кортекса к 2019.

Слайд 19


Когнитивные гибридные системы поддержки принятия решений, слайд №19
Описание слайда:

Слайд 20


Когнитивные гибридные системы поддержки принятия решений, слайд №20
Описание слайда:

Слайд 21





Когнитивная социальная наука
Описание слайда:
Когнитивная социальная наука

Слайд 22





Гетеродоксальная эконономика2
Описание слайда:
Гетеродоксальная эконономика2

Слайд 23





Поведенческая  
экономика 2
 Главный объект исследований Д. Канемана – это механизмы принятия человеком решений в ситуации неопределенности. Он доказал, что принимаемые людьми решения существенно отклоняются от того, что предписано стандартной моделью «экономического человека». Критикой этой модели занимались и до Д. Канемана (можно вспомнить, например, нобелевских лауреатов Г. Саймона и М. Алле), но именно он и его коллеги впервые начали систематически изучать психологию принятия решений. Его эксперименты доказали, что люди не могут рационально оценивать ни величины ожидаемых выгод или потерь, ни их вероятности.
Описание слайда:
Поведенческая экономика 2 Главный объект исследований Д. Канемана – это механизмы принятия человеком решений в ситуации неопределенности. Он доказал, что принимаемые людьми решения существенно отклоняются от того, что предписано стандартной моделью «экономического человека». Критикой этой модели занимались и до Д. Канемана (можно вспомнить, например, нобелевских лауреатов Г. Саймона и М. Алле), но именно он и его коллеги впервые начали систематически изучать психологию принятия решений. Его эксперименты доказали, что люди не могут рационально оценивать ни величины ожидаемых выгод или потерь, ни их вероятности.

Слайд 24





Теория перспектив
В русле поведенческой экономической теории были разработаны альтернативные концепции: 1) выбор в условиях риска и неопределенности; 2) межвременной выбор; 3) поведенческая теория игр.
Выбор в условиях риска и неопределенности: теория перспектив. Классической работой в данной области принято считать статью «Теория Перспектив: анализ принятия решений в условиях риска», «Эконометрика» 1979 год. В 1992 году ученые опубликовали еще одну статью «Достижения в теории Перспектив: обобщенное представление неопределенности», в которой они обобщили результаты предыдущих многолетних исследований в данной сфере, в частности на область принятия решений в условиях неопределенности, и представили аксиоматическую трактовку теории.
Описание слайда:
Теория перспектив В русле поведенческой экономической теории были разработаны альтернативные концепции: 1) выбор в условиях риска и неопределенности; 2) межвременной выбор; 3) поведенческая теория игр. Выбор в условиях риска и неопределенности: теория перспектив. Классической работой в данной области принято считать статью «Теория Перспектив: анализ принятия решений в условиях риска», «Эконометрика» 1979 год. В 1992 году ученые опубликовали еще одну статью «Достижения в теории Перспектив: обобщенное представление неопределенности», в которой они обобщили результаты предыдущих многолетних исследований в данной сфере, в частности на область принятия решений в условиях неопределенности, и представили аксиоматическую трактовку теории.

Слайд 25





Теория межвременного выбора
Межвременной выбор. Решения, принимаемые индивидами и включающие в себя соизмерение понесенных издержек и получаемых выгод, которые относились бы к различным периодам времени, являются центральными в области исследования сбережений и инвестиций, потребительского поведения, а в конечном счете проблем, связанных с общественным благосостоянием той или иной нации. Поэтому известные экономисты прошлого (И. Фишер, П. Самуэльсон, и многие другие) уделяли серьезное внимание проблеме теоретического анализа факторов, влияющих на поведение экономических субъектов в ситуациях принятия решений, когда последствия, а точнее, результаты действий становятся известными спустя определенное время.
Описание слайда:
Теория межвременного выбора Межвременной выбор. Решения, принимаемые индивидами и включающие в себя соизмерение понесенных издержек и получаемых выгод, которые относились бы к различным периодам времени, являются центральными в области исследования сбережений и инвестиций, потребительского поведения, а в конечном счете проблем, связанных с общественным благосостоянием той или иной нации. Поэтому известные экономисты прошлого (И. Фишер, П. Самуэльсон, и многие другие) уделяли серьезное внимание проблеме теоретического анализа факторов, влияющих на поведение экономических субъектов в ситуациях принятия решений, когда последствия, а точнее, результаты действий становятся известными спустя определенное время.

Слайд 26





Теория межвременного выбора 2
Теоретической основой для последующих более чем полувековых исследований в этой области стала модель дисконтированной полезности (МДП), предложенная ее автором П. Самуэльсоном в 1937 году и получившая со временем аксиоматическую трактовку в работах Т. Купманса. Модель определяет межвременные предпочтения лица, принимающего решение, между различными конфигурациями потребительских планов. Данная модель обеспечила простую и в то же время мощную аналитическую схему для рассмотрения широкого спектра хозяйственных решений, последствия которых не известны в момент совершения действий.
Описание слайда:
Теория межвременного выбора 2 Теоретической основой для последующих более чем полувековых исследований в этой области стала модель дисконтированной полезности (МДП), предложенная ее автором П. Самуэльсоном в 1937 году и получившая со временем аксиоматическую трактовку в работах Т. Купманса. Модель определяет межвременные предпочтения лица, принимающего решение, между различными конфигурациями потребительских планов. Данная модель обеспечила простую и в то же время мощную аналитическую схему для рассмотрения широкого спектра хозяйственных решений, последствия которых не известны в момент совершения действий.

Слайд 27





Поведенческая теория игр
Поведенческая теория игр. Использование математического аппарата теории игр в области экономической науки во второй половине прошлого столетия оказалось чрезвычайно плодотворным. В наибольшей степени это проявилось в тех разделах, объектом рассмотрения которых является стратегическое взаимодействие экономических агентов между собой в различных условиях и стремление наиболее оптимальным образом разрешить возникшую конфликтную ситуацию. Предложенные формальные концепции анализа (равновесие Нэша, вектор Л.Шэпли, процедура трассирования Дж. Харшаньи - Р. Зельтена и другие) получили широкое применение в качестве теорий как объясняющих реальное поведение участников, так и способных предсказывать определенные последствия.
Описание слайда:
Поведенческая теория игр Поведенческая теория игр. Использование математического аппарата теории игр в области экономической науки во второй половине прошлого столетия оказалось чрезвычайно плодотворным. В наибольшей степени это проявилось в тех разделах, объектом рассмотрения которых является стратегическое взаимодействие экономических агентов между собой в различных условиях и стремление наиболее оптимальным образом разрешить возникшую конфликтную ситуацию. Предложенные формальные концепции анализа (равновесие Нэша, вектор Л.Шэпли, процедура трассирования Дж. Харшаньи - Р. Зельтена и другие) получили широкое применение в качестве теорий как объясняющих реальное поведение участников, так и способных предсказывать определенные последствия.

Слайд 28





Нейроэкономика 1
Нейроэкономика – новое научное направление, использующее методы исследования, основанные на достижениях современной нейрофизиологии и приложений психологии, тем или иным образом применимым к экономике.
Нейроэкономика ставит своей целью создание единой теории принятия решения человеком. 
 Нейроэкономика позволяет представителям разных дисциплин (нейробиологам, экономистам, психологам и менеджерам) получить более глубокие представления о фундаментальных механизмах принятия решений
 Нейроэкономика использует визуализацию мозговой деятельности для того, чтобы делать выводы о том, как функционирует мозг и использовать результаты наблюдений для расширения существующих экономических дисциплин и формирования новых направлений, таких как нейромаркетинг.
Описание слайда:
Нейроэкономика 1 Нейроэкономика – новое научное направление, использующее методы исследования, основанные на достижениях современной нейрофизиологии и приложений психологии, тем или иным образом применимым к экономике. Нейроэкономика ставит своей целью создание единой теории принятия решения человеком. Нейроэкономика позволяет представителям разных дисциплин (нейробиологам, экономистам, психологам и менеджерам) получить более глубокие представления о фундаментальных механизмах принятия решений Нейроэкономика использует визуализацию мозговой деятельности для того, чтобы делать выводы о том, как функционирует мозг и использовать результаты наблюдений для расширения существующих экономических дисциплин и формирования новых направлений, таких как нейромаркетинг.

Слайд 29





Нейроэкономика 2
Нейроэкономика - синтез когнитивной нейронауки 
   и экономических наук и  изучение процесса принятия
   решения в рамках выбора определенного поведения 
   из возможных альтернатив    с целью реалистического моделирования экономического поведения человека.
Существует четыре основных метода визуализации процессов головного мозга: электроэнцефалограмма, позитронно-эмиссионная томография, магнитно-резонансная томография, функциональная магнитно-резонансная томография.
Описание слайда:
Нейроэкономика 2 Нейроэкономика - синтез когнитивной нейронауки и экономических наук и изучение процесса принятия решения в рамках выбора определенного поведения из возможных альтернатив с целью реалистического моделирования экономического поведения человека. Существует четыре основных метода визуализации процессов головного мозга: электроэнцефалограмма, позитронно-эмиссионная томография, магнитно-резонансная томография, функциональная магнитно-резонансная томография.

Слайд 30





Нейроэкономика 3
Сочетание этих методов и их использование наряду с традиционными методиками (например, измерение биометрических параметров) позволяет составить подробную карту зон активации головного мозга в процессе принятия решений, например, для принятия решений наиболее важны взаимодействия зон в лобных долях, лимбической системе
Описание слайда:
Нейроэкономика 3 Сочетание этих методов и их использование наряду с традиционными методиками (например, измерение биометрических параметров) позволяет составить подробную карту зон активации головного мозга в процессе принятия решений, например, для принятия решений наиболее важны взаимодействия зон в лобных долях, лимбической системе

Слайд 31





Нейроэкономические процессы выбора
Описание слайда:
Нейроэкономические процессы выбора

Слайд 32





                         Полезность
аддиктивное и демонстративное потребление или покупки из-за навязчивого желания
стриатум (группа подкорковых ядер) подпитывает жажду выигрыша, а зоны лобных долей управляют дальнейшим поведением человека
непосредственная полезность денег: обладание деньгами само по себе доставляет удовольствие, а расставание с ними может давать неприятное ощущение (несмотря на получаемые взамен блага)
Описание слайда:
Полезность аддиктивное и демонстративное потребление или покупки из-за навязчивого желания стриатум (группа подкорковых ядер) подпитывает жажду выигрыша, а зоны лобных долей управляют дальнейшим поведением человека непосредственная полезность денег: обладание деньгами само по себе доставляет удовольствие, а расставание с ними может давать неприятное ощущение (несмотря на получаемые взамен блага)

Слайд 33





Нейроэкономика отвечает на вопросы:
Нейроэкономика отвечает на вопросы:
существует ли связь между качественными поведенческими характеристиками и особенностями структур головного мозга или биохимических процессов на уровне нейронов? 
может ли изучение таких структур и процессов дать типизацию людей по определенным критериям?
как дифференцировать индивидов по предпочтениям и способностям?
Описание слайда:
Нейроэкономика отвечает на вопросы: Нейроэкономика отвечает на вопросы: существует ли связь между качественными поведенческими характеристиками и особенностями структур головного мозга или биохимических процессов на уровне нейронов? может ли изучение таких структур и процессов дать типизацию людей по определенным критериям? как дифференцировать индивидов по предпочтениям и способностям?

Слайд 34





МОЗГ ЧЕЛОВЕКА
Описание слайда:
МОЗГ ЧЕЛОВЕКА

Слайд 35





Колонка нейронов
Колонка нейронов
Описание слайда:
Колонка нейронов Колонка нейронов

Слайд 36





ЭЭГ
Описание слайда:
ЭЭГ

Слайд 37





Компьютерная томография
Описание слайда:
Компьютерная томография

Слайд 38





Позитронно-эмиссионная томография
Описание слайда:
Позитронно-эмиссионная томография

Слайд 39





Ультиматум 1
Нерациональность человеческого поведения не раз подтверждалась экспериментально. Нобелевский лауреат Дениэл Канеман (Kahneman, 2003) выдвинул предположение о существовании двух эволюционно и структурно различающихся систем, обусловливающих принятие решений: a) быстрой, автоматической, или бессознательной (Система 1), и б) медленной, целенаправленной, произвольной (Система 2).  
В настоящее время многочисленные нейроэкономические исследования посвящены изучению взаимодействия рациональной и эмоциональной систем в рамках дуализма Канемана.
Описание слайда:
Ультиматум 1 Нерациональность человеческого поведения не раз подтверждалась экспериментально. Нобелевский лауреат Дениэл Канеман (Kahneman, 2003) выдвинул предположение о существовании двух эволюционно и структурно различающихся систем, обусловливающих принятие решений: a) быстрой, автоматической, или бессознательной (Система 1), и б) медленной, целенаправленной, произвольной (Система 2). В настоящее время многочисленные нейроэкономические исследования посвящены изучению взаимодействия рациональной и эмоциональной систем в рамках дуализма Канемана.

Слайд 40





Ультиматум 2
Среди наиболее часто используемых экспериментальных моделей можно назвать игру «Ультиматум» , наиболее ярко демонстрирующую возникновение подобного рода конфликтов: два игрока получают инструкцию поделить между собой определенную сумму денег, например, 100 рублей. Один из игроков первым предлагает способ дележа, причем он абсолютно свободен в своем решении. Предположим, игрок захочет оставить 80 рублей себе, а 20 рублей отдать своему партнеру по игре. Партнер , которому сделали предложение, оказывается перед выбором: согласиться или не согласиться; однако если респондент не соглашается, то, по правилам игры, денег не получает никто и игра заканчивается.
Описание слайда:
Ультиматум 2 Среди наиболее часто используемых экспериментальных моделей можно назвать игру «Ультиматум» , наиболее ярко демонстрирующую возникновение подобного рода конфликтов: два игрока получают инструкцию поделить между собой определенную сумму денег, например, 100 рублей. Один из игроков первым предлагает способ дележа, причем он абсолютно свободен в своем решении. Предположим, игрок захочет оставить 80 рублей себе, а 20 рублей отдать своему партнеру по игре. Партнер , которому сделали предложение, оказывается перед выбором: согласиться или не согласиться; однако если респондент не соглашается, то, по правилам игры, денег не получает никто и игра заканчивается.

Слайд 41





Ультиматум 3
Используя метод функциональной магнитно-резонансной томографии (фМРТ), американский нейробиолог Алан Сенфи показал, что у респондента, которому сделали несправедливое предложение в игре «Ультиматум», наблюдается активация островковой коры (anterior insula), которая, как известно из других нейробиологических исследований, вовлечена в обработку негативной эмоциональной информации и особенно активна при эмоции отвращения. Кроме того, наблюдалась активация верхних областей лобной коры (dorsolateral prefrontal cortex, DLPFC) правого полушария и поясной извилины (anterior cingulate cortex) – областей, активация которых наблюдается при запуске когнитивных процессов самоконтроля и при внутренних конфликтах, соответственно. В целом приведенный пример ярко демонстрирует взаимодействие эмоциональных и рациональных процессов в момент принятия решений.
Описание слайда:
Ультиматум 3 Используя метод функциональной магнитно-резонансной томографии (фМРТ), американский нейробиолог Алан Сенфи показал, что у респондента, которому сделали несправедливое предложение в игре «Ультиматум», наблюдается активация островковой коры (anterior insula), которая, как известно из других нейробиологических исследований, вовлечена в обработку негативной эмоциональной информации и особенно активна при эмоции отвращения. Кроме того, наблюдалась активация верхних областей лобной коры (dorsolateral prefrontal cortex, DLPFC) правого полушария и поясной извилины (anterior cingulate cortex) – областей, активация которых наблюдается при запуске когнитивных процессов самоконтроля и при внутренних конфликтах, соответственно. В целом приведенный пример ярко демонстрирует взаимодействие эмоциональных и рациональных процессов в момент принятия решений.

Слайд 42





Когнитивная экономи-
ка (в узком смысле)
Область когнитивной экономики (в узком смысле) основана на применении когнитивной науки к экономике и изучает модели принятия экономических решений в сознании человека.  Когнитивная экономика - раздел гетеродоксальной экономической теории, имеющий дело с экспериментальным анализом того, как собственно человек принимает экономические решения и зачастую опровергающий классическую теорию, основанную на рациональном выборе с полной информацией.
Описание слайда:
Когнитивная экономи- ка (в узком смысле) Область когнитивной экономики (в узком смысле) основана на применении когнитивной науки к экономике и изучает модели принятия экономических решений в сознании человека. Когнитивная экономика - раздел гетеродоксальной экономической теории, имеющий дело с экспериментальным анализом того, как собственно человек принимает экономические решения и зачастую опровергающий классическую теорию, основанную на рациональном выборе с полной информацией.

Слайд 43





Когнитивная экономика в широком смысле
Когнитивная экономика является одним из перспективных направлений развития экономики и прикладной когнитивной науки. Структурно, методологически и технологически когнитивная экономика связана с методами  искусственного интеллекта и  управления знаниями в экономике. Сама по себе когнитивная экономика, как сфера исследований и человеческой деятельности, включает в себя три основные области. Объединение этих областей назовем «когнитивной экономикой в широком смысле»
Описание слайда:
Когнитивная экономика в широком смысле Когнитивная экономика является одним из перспективных направлений развития экономики и прикладной когнитивной науки. Структурно, методологически и технологически когнитивная экономика связана с методами искусственного интеллекта и управления знаниями в экономике. Сама по себе когнитивная экономика, как сфера исследований и человеческой деятельности, включает в себя три основные области. Объединение этих областей назовем «когнитивной экономикой в широком смысле»

Слайд 44





Конвергенция управления знаниями, искусственного интеллекта и когнитивной науки
Описание слайда:
Конвергенция управления знаниями, искусственного интеллекта и когнитивной науки

Слайд 45





Визуализация взаимодействия блоггеров
Описание слайда:
Визуализация взаимодействия блоггеров

Слайд 46





Компьютерное моделирование верхнего слоя колонки Маунткастла (neocortical columns) (узловые структуры содержащие от 10 до 70 тысяч нейронов) мозга крысы. Здесь возбуждённые нейроны подсвечены  розовым, голубыми и желтыми цветами (проект  Blue Brain).
Описание слайда:
Компьютерное моделирование верхнего слоя колонки Маунткастла (neocortical columns) (узловые структуры содержащие от 10 до 70 тысяч нейронов) мозга крысы. Здесь возбуждённые нейроны подсвечены розовым, голубыми и желтыми цветами (проект Blue Brain).

Слайд 47





Архитектура нейро-нечеткой сети – инструмента извлечения знаний
Описание слайда:
Архитектура нейро-нечеткой сети – инструмента извлечения знаний

Слайд 48





Интеллектуальные 
системы в экономике

Область интеллектуальных систем в экономике связана с использованием в экономике, производственной сфере и бизнесе методов и моделей искусственного интеллекта, ИИС, СППР, интеллектуальной обработки данных и т.д.  Важным аспектом поддержки управленческих решений в экономике является развитие методов экономического моделирования, основанных на знаниях и моделях когнитивной бизнес-аналитики
Описание слайда:
Интеллектуальные системы в экономике Область интеллектуальных систем в экономике связана с использованием в экономике, производственной сфере и бизнесе методов и моделей искусственного интеллекта, ИИС, СППР, интеллектуальной обработки данных и т.д. Важным аспектом поддержки управленческих решений в экономике является развитие методов экономического моделирования, основанных на знаниях и моделях когнитивной бизнес-аналитики

Слайд 49





Управление знаниями в экономике
Область управление знаниями в экономике – ключевой элемент экономики знаний, или «новой экономики». Кроме собственно управления, область  тесно связана с инновационной экономикой, интеллектуальным капиталом, со знаниями, как экономической категорией, управлением изменениями, реинженирингом и т. Основными социальными положениями «новой экономики» являются такие понятия как важность интеллектуального капитала, создание информационного общества, новые формы ведения бизнеса на основе сетевых технологий, интенсивное развитие электронного бизнеса и электронной коммерции, развитие инновационных ресурсосберегающих технологий и альтернативных, экологически чистых источников энергии и так далее. На первый план выходят проблемы инновационного развития экономики и социума на основе прогнозирования тенденций в экономике, обществе, технологической сфере и цивилизации в целом.
Описание слайда:
Управление знаниями в экономике Область управление знаниями в экономике – ключевой элемент экономики знаний, или «новой экономики». Кроме собственно управления, область тесно связана с инновационной экономикой, интеллектуальным капиталом, со знаниями, как экономической категорией, управлением изменениями, реинженирингом и т. Основными социальными положениями «новой экономики» являются такие понятия как важность интеллектуального капитала, создание информационного общества, новые формы ведения бизнеса на основе сетевых технологий, интенсивное развитие электронного бизнеса и электронной коммерции, развитие инновационных ресурсосберегающих технологий и альтернативных, экологически чистых источников энергии и так далее. На первый план выходят проблемы инновационного развития экономики и социума на основе прогнозирования тенденций в экономике, обществе, технологической сфере и цивилизации в целом.

Слайд 50





Когнитивная экономика в узком смысле = примение методов когнитивной   науки в экономике
Основными проблемами когнитивной  экономики стали индивидуальная и коллективная  рациональность, когнитивные модели и институты, социальный капитал, доверие и  социальные сети, непрерывное повышение компетенций и обучение, ценности  и институциональные изменения. Когнитивная экономика является одной из основополагающих концепций современного социально-экономического развития
Описание слайда:
Когнитивная экономика в узком смысле = примение методов когнитивной науки в экономике Основными проблемами когнитивной экономики стали индивидуальная и коллективная рациональность, когнитивные модели и институты, социальный капитал, доверие и социальные сети, непрерывное повышение компетенций и обучение, ценности и институциональные изменения. Когнитивная экономика является одной из основополагающих концепций современного социально-экономического развития

Слайд 51





Интеллектуальные системы в экономике &  управлениe  знаниями
На пересечении областей интеллектуальных систем в экономике и области управления  знаниями в экономике (зона 1) лежат методы дистрибутивного искусственного интеллекта -онтологического поиска, семантического веба для фиксации, обмена и повторного использования знаний, многоагентных систем, методы поддержки принятия решений в бизнес-аналитике, data mining, business intelligence. Эта зона также связана  с созданием систем СПРР и обработки данных для инновационных бизнес-процессов.
Описание слайда:
Интеллектуальные системы в экономике & управлениe знаниями На пересечении областей интеллектуальных систем в экономике и области управления знаниями в экономике (зона 1) лежат методы дистрибутивного искусственного интеллекта -онтологического поиска, семантического веба для фиксации, обмена и повторного использования знаний, многоагентных систем, методы поддержки принятия решений в бизнес-аналитике, data mining, business intelligence. Эта зона также связана с созданием систем СПРР и обработки данных для инновационных бизнес-процессов.

Слайд 52







Когнитивные вычисления -следующее поколение  C&C (NEC)
Описание слайда:
Когнитивные вычисления -следующее поколение C&C (NEC)

Слайд 53





Управление  знаниями & когнитивная экономика (в узком смысле
На пересечении областей управления  знаниями в экономике и когнитивной экономики (в узком смысле) (зона 3)  находятся такие направления, как прямое использование когнитивных методов в бизнес процессах и социальных процессах , например, нейроэкономика, нейромаркетинг
Описание слайда:
Управление знаниями & когнитивная экономика (в узком смысле На пересечении областей управления знаниями в экономике и когнитивной экономики (в узком смысле) (зона 3) находятся такие направления, как прямое использование когнитивных методов в бизнес процессах и социальных процессах , например, нейроэкономика, нейромаркетинг

Слайд 54





Нейробиологические различия оценок Джорджа Буша и Джона Керри (А – негативная оценка Буша,
В – позитивная оценка Буша, С – негативная оценка Керри)
Описание слайда:
Нейробиологические различия оценок Джорджа Буша и Джона Керри (А – негативная оценка Буша, В – позитивная оценка Буша, С – негативная оценка Керри)

Слайд 55





Разница в работе мозга демократов и республиканцев при оценке Буша и Керри
Описание слайда:
Разница в работе мозга демократов и республиканцев при оценке Буша и Керри

Слайд 56





Интеллектуальные системы в экономике &  когнитивная экономика  
На пересечение областей интеллектуальных систем в экономике  и когнитивной экономики (в узком смысле) (зона 2) лежат гибридные интеллектуальные системы технические с настройкой на сознание и логику эксперта. Они состоят из когнитивной и аналитической части, причем нижний уровень - когнитивный, предоставляет информацию для обработки верхним, аналитическим, уровнем.
Описание слайда:
Интеллектуальные системы в экономике & когнитивная экономика На пересечение областей интеллектуальных систем в экономике и когнитивной экономики (в узком смысле) (зона 2) лежат гибридные интеллектуальные системы технические с настройкой на сознание и логику эксперта. Они состоят из когнитивной и аналитической части, причем нижний уровень - когнитивный, предоставляет информацию для обработки верхним, аналитическим, уровнем.

Слайд 57





Управление  знаниями в экономике & когнитивная экономика (в узком смысле) & интеллектуальные системы в экономике
На пересечении областей управления  знаниями в экономике, когнитивной экономики (в узком смысле) и интеллектуальных систем в экономике (зона 4)  лежат системы бизнес-аналитики для экономики знаний на основе интеллектуальных систем поддержки принятия решений, использующие когнитивные методы  анализа сознания людей, вовлеченных в эти процессы, а также тестирование качества ЛПР по их мозговой активности, для параметрической настройки интеллектуальных систем поддержки принятия решений. С этой областью также связаны работы по интеграции моделей прогноза и оценивания неструктурированных ситуаций на основе подходов когнитивного моделирования
Описание слайда:
Управление знаниями в экономике & когнитивная экономика (в узком смысле) & интеллектуальные системы в экономике На пересечении областей управления знаниями в экономике, когнитивной экономики (в узком смысле) и интеллектуальных систем в экономике (зона 4) лежат системы бизнес-аналитики для экономики знаний на основе интеллектуальных систем поддержки принятия решений, использующие когнитивные методы анализа сознания людей, вовлеченных в эти процессы, а также тестирование качества ЛПР по их мозговой активности, для параметрической настройки интеллектуальных систем поддержки принятия решений. С этой областью также связаны работы по интеграции моделей прогноза и оценивания неструктурированных ситуаций на основе подходов когнитивного моделирования

Слайд 58





Гибридная система поддержки принятия решений  на основе нечетких иерархий и когнитивных карт
В ВЦ РАН, в университете «Дубна» и на кафедре информатики факультета информатики РЭА ведутся работы по интеграции моделей прогноза и оценивания неструктурированных ситуаций на основе подхода когнитивного моделирования и анализа иерархий
Описание слайда:
Гибридная система поддержки принятия решений на основе нечетких иерархий и когнитивных карт В ВЦ РАН, в университете «Дубна» и на кафедре информатики факультета информатики РЭА ведутся работы по интеграции моделей прогноза и оценивания неструктурированных ситуаций на основе подхода когнитивного моделирования и анализа иерархий

Слайд 59





Методы моделирования ситуации
Описание слайда:
Методы моделирования ситуации

Слайд 60





Взаимодействие моделей
Описание слайда:
Взаимодействие моделей

Слайд 61





Когнитивные сети поддержки принятия решений 1
Когнитивный подход, в узком смысле этого понятия, объединяет исследования, общим признаком которых является использование формальных моделей когнитивных карт того или иного вида, т.е. превращает когнитивный подход в формальную нормативную теорию практически без взаимосвязи с ментальным пространством человека – ментальной моделью. Мы рассмотрим более широкую интерпретацию – когнитивные сети поддержки принятия решений (КСППР), с возможностью адаптации к ментальной модели.
Описание слайда:
Когнитивные сети поддержки принятия решений 1 Когнитивный подход, в узком смысле этого понятия, объединяет исследования, общим признаком которых является использование формальных моделей когнитивных карт того или иного вида, т.е. превращает когнитивный подход в формальную нормативную теорию практически без взаимосвязи с ментальным пространством человека – ментальной моделью. Мы рассмотрим более широкую интерпретацию – когнитивные сети поддержки принятия решений (КСППР), с возможностью адаптации к ментальной модели.

Слайд 62





                       Виды КСППР
В ряде направлений и школ, применяющих практически те же формальные модели и методы, для создания ментальных моделей не применяется понятие когнитивной карты. Вместо него используются знаковые графы, сетевые модели, графах причин и следствий, каузальные сети. Очень близким по смыслу к когнитивным картам являются байесовcкие  сети,  сети доверия, аналитические сети Саати, когнитивные иерархические сети, сети решений, нечеткие сети Петри, сети концептов, семантические сети, фреймы, схемы, сценарии. Широко используются методы обучения.
Описание слайда:
Виды КСППР В ряде направлений и школ, применяющих практически те же формальные модели и методы, для создания ментальных моделей не применяется понятие когнитивной карты. Вместо него используются знаковые графы, сетевые модели, графах причин и следствий, каузальные сети. Очень близким по смыслу к когнитивным картам являются байесовcкие сети, сети доверия, аналитические сети Саати, когнитивные иерархические сети, сети решений, нечеткие сети Петри, сети концептов, семантические сети, фреймы, схемы, сценарии. Широко используются методы обучения.

Слайд 63





Система 1 и Система 2
Эти два уровня (когнитивный и аналитический) соответствуют  двум типам когнитивных процессов,  которые в работах Канемана были  рассмотрены, как Система 1 и Система 2. Операции в рамках Системы 1 протекают быстро, автоматически, без усилий, они ассоциативны, зачастую эмоционально окрашены и управляются привычками, поэтому их сложно контролировать и модифицировать.  Операции Системы 2 происходят медленнее, последовательно, с интеллектуальными усилиями и намеренным контролем; они также относительно гибки и потенциально подвержены влиянию правил
Описание слайда:
Система 1 и Система 2 Эти два уровня (когнитивный и аналитический) соответствуют двум типам когнитивных процессов, которые в работах Канемана были рассмотрены, как Система 1 и Система 2. Операции в рамках Системы 1 протекают быстро, автоматически, без усилий, они ассоциативны, зачастую эмоционально окрашены и управляются привычками, поэтому их сложно контролировать и модифицировать. Операции Системы 2 происходят медленнее, последовательно, с интеллектуальными усилиями и намеренным контролем; они также относительно гибки и потенциально подвержены влиянию правил

Слайд 64





Когнитивные технологии СППР
С увеличением важности когнитивных аспектов в процессе принятия решений особенное внимание уделяется таким когнитивным способностям человека, как оценка ситуации и ментальным моделям и их роли в  управлении процессом поддержки принятия решения в сложных ситуациях. При этом к существующей схеме BI добавляется модель когнитивно-ориентированного процесса поддержки принятия решения. Мы предлагаем использовать в ней модели КСППР.
Описание слайда:
Когнитивные технологии СППР С увеличением важности когнитивных аспектов в процессе принятия решений особенное внимание уделяется таким когнитивным способностям человека, как оценка ситуации и ментальным моделям и их роли в управлении процессом поддержки принятия решения в сложных ситуациях. При этом к существующей схеме BI добавляется модель когнитивно-ориентированного процесса поддержки принятия решения. Мы предлагаем использовать в ней модели КСППР.

Слайд 65





Постановка задачи
Цель: Создание поведенческой модели принятия решений на основе теории перспектив для увеличение точности экономического прогнозирования поведения ЛПР в ситуациях неопределенности.
Исходные данные: 1) Д.Канеман П.Словик А.Тверски Принятие решений в неопределённости. 2) Система Matlab Fuzzy Logic Toolbox. 3) Ларичев О.И. Теория и методы принятия решений. 4) Леоненков А.В. Нечеткое моделирование в среде Matlab и fuzzyTECH. 

Ожидаемый результат: Созданная модель представляет собой аппроксимацию эвристических правил Д. Канемана на универсальных шкалах с использованием продукционных правил.
Описание слайда:
Постановка задачи Цель: Создание поведенческой модели принятия решений на основе теории перспектив для увеличение точности экономического прогнозирования поведения ЛПР в ситуациях неопределенности. Исходные данные: 1) Д.Канеман П.Словик А.Тверски Принятие решений в неопределённости. 2) Система Matlab Fuzzy Logic Toolbox. 3) Ларичев О.И. Теория и методы принятия решений. 4) Леоненков А.В. Нечеткое моделирование в среде Matlab и fuzzyTECH. Ожидаемый результат: Созданная модель представляет собой аппроксимацию эвристических правил Д. Канемана на универсальных шкалах с использованием продукционных правил.

Слайд 66





Предметная область
Поведенческая экономика

Теория перспектив
(Система 1), (Система 2).

Лингвистические термы 

Продукционные правила

Универсальные Шкалы

Нечеткое моделирование в среде Matlab
Описание слайда:
Предметная область Поведенческая экономика Теория перспектив (Система 1), (Система 2). Лингвистические термы Продукционные правила Универсальные Шкалы Нечеткое моделирование в среде Matlab

Слайд 67





Проектирование
Описание слайда:
Проектирование

Слайд 68





Реализация
 1
Описание слайда:
Реализация 1

Слайд 69





Результаты
На рисунке видно, что  поверхность нечеткого вывода имеет участки схожие с функцией полезности полученной экспериментально.
Описание слайда:
Результаты На рисунке видно, что поверхность нечеткого вывода имеет участки схожие с функцией полезности полученной экспериментально.

Слайд 70





Результаты
Модель имеет тридцать поверхностей нечеткого вывода, и возможность получения числовых значений выходных переменных.
Описание слайда:
Результаты Модель имеет тридцать поверхностей нечеткого вывода, и возможность получения числовых значений выходных переменных.

Слайд 71





Ментальные модели в системах  бизнес-интеллекта.
КСППР – база эталонов и ментальных моделей (Li Niu, 2009)
Описание слайда:
Ментальные модели в системах бизнес-интеллекта. КСППР – база эталонов и ментальных моделей (Li Niu, 2009)

Слайд 72





Заключение
Созданная модель представляет собой аппроксимацию эвристических правил Д. Канемана на универсальных шкалах с использованием продукционных правил. Надо отметить, что не всегда есть возможность получать данные экспериментально, а тем более с привлечением нейробиологов. А данная модель выдает данные схожие с данными полученными экспериментальным путем. Следовательно, в большинстве случаев она показывает, что агрегация правил является хорошим аппроксиматором для динамического поведения сложных систем в неопределенности.
Описание слайда:
Заключение Созданная модель представляет собой аппроксимацию эвристических правил Д. Канемана на универсальных шкалах с использованием продукционных правил. Надо отметить, что не всегда есть возможность получать данные экспериментально, а тем более с привлечением нейробиологов. А данная модель выдает данные схожие с данными полученными экспериментальным путем. Следовательно, в большинстве случаев она показывает, что агрегация правил является хорошим аппроксиматором для динамического поведения сложных систем в неопределенности.

Слайд 73





 Биологическая и когнитивная 
 Биологическая и когнитивная 
обработка информации
Основы биологической обработки 
информации
Когнитивная наука 
Психологические и нейрофизиологические 
эксперименты 
Нейросетевое моделирование 
процессов обработки сенсорной  информации
Восприятие и обработка  речи
Когнитивная робототехника
Описание слайда:
Биологическая и когнитивная Биологическая и когнитивная обработка информации Основы биологической обработки информации Когнитивная наука Психологические и нейрофизиологические эксперименты Нейросетевое моделирование процессов обработки сенсорной информации Восприятие и обработка речи Когнитивная робототехника



Похожие презентации
Mypresentation.ru
Загрузить презентацию