🗊Презентация Квазистационарные процессы. RC- и RL-цепи. (Лекция 13)

Категория: Физика
Нажмите для полного просмотра!
Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №1Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №2Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №3Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №4Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №5Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №6Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №7Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №8Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №9Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №10Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №11Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №12Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №13Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №14Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №15Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №16Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №17Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №18Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №19Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №20Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №21Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №22Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №23Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №24Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №25Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №26Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №27Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №28Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №29Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №30Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №31Квазистационарные процессы. RC- и RL-цепи. (Лекция 13), слайд №32

Содержание

Вы можете ознакомиться и скачать презентацию на тему Квазистационарные процессы. RC- и RL-цепи. (Лекция 13). Доклад-сообщение содержит 32 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Лекция 13
Описание слайда:
Лекция 13

Слайд 2





 Квазистационарные процессы. RC- и RL-цепи 
Если на каком-то участке цепи происходят изменения силы тока или напряжения, то другие участки цепи могут «почувствовать» эти изменения только через некоторое время, которое по порядку величины равно времени τ распространения электромагнитного возмущения от одной точки цепи к другой. Так как электромагнитные возмущения распространяются с конечной скоростью, равной скорости света c , то где l – расстояние между наиболее удаленными точками цепи. Если это время τ много меньше длительности процессов, происходящих в цепи, то можно считать, что в каждый момент времени сила тока одинакова во всех последовательно соединенных участках цепи. Процессы такого рода в электрических цепях называются квазистационарными.
Квазистационарные процессы можно исследовать с помощью законов постоянного тока, если применять эти законы к мгновенным значениям сил токов и напряжений на участках цепи.
Описание слайда:
Квазистационарные процессы. RC- и RL-цепи Если на каком-то участке цепи происходят изменения силы тока или напряжения, то другие участки цепи могут «почувствовать» эти изменения только через некоторое время, которое по порядку величины равно времени τ распространения электромагнитного возмущения от одной точки цепи к другой. Так как электромагнитные возмущения распространяются с конечной скоростью, равной скорости света c , то где l – расстояние между наиболее удаленными точками цепи. Если это время τ много меньше длительности процессов, происходящих в цепи, то можно считать, что в каждый момент времени сила тока одинакова во всех последовательно соединенных участках цепи. Процессы такого рода в электрических цепях называются квазистационарными. Квазистационарные процессы можно исследовать с помощью законов постоянного тока, если применять эти законы к мгновенным значениям сил токов и напряжений на участках цепи.

Слайд 3





Цепи зарядки и разрядки конденсатора через резистор. 
Цепи зарядки и разрядки конденсатора через резистор. 
   Процесс зарядки конденсатора
Описание слайда:
Цепи зарядки и разрядки конденсатора через резистор. Цепи зарядки и разрядки конденсатора через резистор. Процесс зарядки конденсатора

Слайд 4





Зарядка (I) и разрядка (II) конденсатора через резистор. 
Зарядка (I) и разрядка (II) конденсатора через резистор. 
Процесс разрядки описывается выражением 
   U(t) =  exp (–t / τ).
Описание слайда:
Зарядка (I) и разрядка (II) конденсатора через резистор. Зарядка (I) и разрядка (II) конденсатора через резистор. Процесс разрядки описывается выражением U(t) =  exp (–t / τ).

Слайд 5





RLC-контур. Свободные колебания 
В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур.
Описание слайда:
RLC-контур. Свободные колебания В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур.

Слайд 6





Аналогия процессов свободных электрических и механических колебаний. 
Аналогия процессов свободных электрических и механических колебаний.
Описание слайда:
Аналогия процессов свободных электрических и механических колебаний. Аналогия процессов свободных электрических и механических колебаний.

Слайд 7





В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону 
В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону 
              q(t) = q0cos(ωt + φ0). 
Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний 
При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:
Описание слайда:
В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону q(t) = q0cos(ωt + φ0). Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:

Слайд 8





Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – βυ. Коэффициент β в этой формуле аналогичен сопротивлению R в электрическом контуре. Уравнение свободных колебаний в контуре при наличии затухания имеет вид 
Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – βυ. Коэффициент β в этой формуле аналогичен сопротивлению R в электрическом контуре. Уравнение свободных колебаний в контуре при наличии затухания имеет вид
Описание слайда:
Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – βυ. Коэффициент β в этой формуле аналогичен сопротивлению R в электрическом контуре. Уравнение свободных колебаний в контуре при наличии затухания имеет вид Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – βυ. Коэффициент β в этой формуле аналогичен сопротивлению R в электрическом контуре. Уравнение свободных колебаний в контуре при наличии затухания имеет вид

Слайд 9





Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания.
Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания.
Ранее  было введено понятие добротности Q колебательной системы: 
где N – число полных колебаний, совершаемых системой за время затухания τ. Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:
Описание слайда:
Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания. Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания. Ранее было введено понятие добротности Q колебательной системы: где N – число полных колебаний, совершаемых системой за время затухания τ. Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:

Слайд 10





Вынужденные колебания. Переменный ток 
Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.
Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.
Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.
Для установления стационарных вынужденных колебаний необходимо некоторое время Δt после включения в цепь внешнего источника. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.
Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.
Описание слайда:
Вынужденные колебания. Переменный ток Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями. Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь. Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника. Для установления стационарных вынужденных колебаний необходимо некоторое время Δt после включения в цепь внешнего источника. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи. Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.

Слайд 11





    Вынужденные колебания в контуре. 
    Вынужденные колебания в контуре. 
Предполагается, что для электрической цепи, изображенной на рис., выполнено условие квазистационарности.Поэтому закон Ома можно записать для мгновенных значений токов и напряжений:
Описание слайда:
Вынужденные колебания в контуре. Вынужденные колебания в контуре. Предполагается, что для электрической цепи, изображенной на рис., выполнено условие квазистационарности.Поэтому закон Ома можно записать для мгновенных значений токов и напряжений:

Слайд 12





Величина            – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности.
Величина            – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности.
Уравнение вынужденных колебаний можно записать в виде uR + uC + uL = e(t) = 0 cos ωt, где uR(t), uC(t) и uL(t) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами UR, UC и UL. При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм.
Описание слайда:
Величина – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности. Величина – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности. Уравнение вынужденных колебаний можно записать в виде uR + uC + uL = e(t) = 0 cos ωt, где uR(t), uC(t) и uL(t) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами UR, UC и UL. При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм.

Слайд 13





Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме. 
Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме.
Описание слайда:
Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме. Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме.

Слайд 14





Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистору с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.
Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистору с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.
1. Резистор в цепи переменного тока

   Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением RIR = UR. 
    Фазовый сдвиг между током и напряжением на резисторе равен нулю.
Описание слайда:
Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистору с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока. Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистору с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока. 1. Резистор в цепи переменного тока Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением RIR = UR. Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Слайд 15





2. Конденсатор в цепи переменного тока
2. Конденсатор в цепи переменного тока

  Соотношение между амплитудами тока IC и напряжения UC: 
  Ток опережает по фазе напряжение на угол 
3. Катушка в цепи переменного тока
   Соотношение между амплитудами тока IL и напряжения UL: 
                   ωLIL = UL. 
   Ток отстает по фазе от напряжения на угол
Описание слайда:
2. Конденсатор в цепи переменного тока 2. Конденсатор в цепи переменного тока Соотношение между амплитудами тока IC и напряжения UC: Ток опережает по фазе напряжение на угол 3. Катушка в цепи переменного тока Соотношение между амплитудами тока IL и напряжения UL: ωLIL = UL. Ток отстает по фазе от напряжения на угол

Слайд 16





Векторная диаграмма на рис.  построена для случая, когда
Векторная диаграмма на рис.  построена для случая, когда
   или
    В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.
Описание слайда:
Векторная диаграмма на рис.  построена для случая, когда Векторная диаграмма на рис.  построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Слайд 17





Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе 
Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе 
Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).
Добротность RLC-контура:
Описание слайда:
Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов). Добротность RLC-контура:

Слайд 18





Резонансные кривые для контуров с различными значениями добротности Q. 
Резонансные кривые для контуров с различными значениями добротности Q. 
Рис.  иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω для различных значений добротности Q. Кривые на рис.  называются резонансными кривыми.
Описание слайда:
Резонансные кривые для контуров с различными значениями добротности Q. Резонансные кривые для контуров с различными значениями добротности Q. Рис.  иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω для различных значений добротности Q. Кривые на рис.  называются резонансными кривыми.

Слайд 19





Закон Ома для цепи переменного тока. Мощность. 
     закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.
Средняя мощность переменного тока на участке цепи, содержащем резистор, равна
Мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.
Описание слайда:
Закон Ома для цепи переменного тока. Мощность. закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки. Средняя мощность переменного тока на участке цепи, содержащем резистор, равна Мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Слайд 20





Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J(t) = I0 cosωt;  e(t) =  0cos(ωt + φ). 
Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J(t) = I0 cosωt;  e(t) =  0cos(ωt + φ). 
Средняя мощность, развиваемая источником переменного тока, равна
Описание слайда:
Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J(t) = I0 cosωt;  e(t) =  0cos(ωt + φ). Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J(t) = I0 cosωt;  e(t) =  0cos(ωt + φ). Средняя мощность, развиваемая источником переменного тока, равна

Слайд 21





Величину                          называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI0 =  0. Это соотношение называют законом Ома для цепи переменного тока. 
Величину                          называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI0 =  0. Это соотношение называют законом Ома для цепи переменного тока.
Описание слайда:
Величину называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI0 =  0. Это соотношение называют законом Ома для цепи переменного тока. Величину называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI0 =  0. Это соотношение называют законом Ома для цепи переменного тока.

Слайд 22





Параллельный RLC-контур. 
Параллельный RLC-контур. 
Векторная диаграмма для параллельного RLC-контура. Из диаграммы следует:
Описание слайда:
Параллельный RLC-контур. Параллельный RLC-контур. Векторная диаграмма для параллельного RLC-контура. Из диаграммы следует:

Слайд 23





Трансформаторы. Передача электрической энергии 
Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.
Описание слайда:
Трансформаторы. Передача электрической энергии Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.

Слайд 24





Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки:
Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки:
 для вторичной обмотки:
Описание слайда:
Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки: Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки: для вторичной обмотки:

Слайд 25





Для амплитудных значений напряжений на обмотках можно записать: 
Для амплитудных значений напряжений на обмотках можно записать: 
Коэффициент K = n2 / n1 есть коэффициент трансформации. При K > 0 трансформатор называется повышающим, при K < 0 – понижающим.
Описание слайда:
Для амплитудных значений напряжений на обмотках можно записать: Для амплитудных значений напряжений на обмотках можно записать: Коэффициент K = n2 / n1 есть коэффициент трансформации. При K > 0 трансформатор называется повышающим, при K < 0 – понижающим.

Слайд 26





Электромагнитные волны 
Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.
Максвелл высказал гипотезу о существовании и обратного процесса:
     Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.
Из теории Максвелла вытекает ряд важных выводов:
    1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы         и          перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. 
     2. Электромагнитные волны распространяются в веществе с конечной скоростью
Описание слайда:
Электромагнитные волны Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты. Максвелл высказал гипотезу о существовании и обратного процесса: Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле. Из теории Максвелла вытекает ряд важных выводов: 1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. 2. Электромагнитные волны распространяются в веществе с конечной скоростью

Слайд 27





Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.
Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.
Скорость электромагнитных волн в вакууме (ε = μ = 1):
 3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.
Описание слайда:
Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м. Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м. Скорость электромагнитных волн в вакууме (ε = μ = 1): 3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Слайд 28





4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S, ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная 
4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S, ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная 
        ΔWэм = (wэ + wм)υSΔt.
    Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:
Описание слайда:
4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S, ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная 4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S, ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная ΔWэм = (wэ + wм)υSΔt. Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Слайд 29





5. Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением 
5. Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением 
   где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. 
    Это соотношение между массой и энергией электромагнитного поля является универсальным законом природы.
Описание слайда:
5. Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением 5. Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Это соотношение между массой и энергией электромагнитного поля является универсальным законом природы.

Слайд 30





7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p(t) которого быстро изменяется во времени. Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ. 
7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p(t) которого быстро изменяется во времени. Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ.
Описание слайда:
7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p(t) которого быстро изменяется во времени. Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ. 7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p(t) которого быстро изменяется во времени. Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ.

Слайд 31





Излучение элементарного диполя.
Излучение элементарного диполя.
Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.
Описание слайда:
Излучение элементарного диполя. Излучение элементарного диполя. Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Слайд 32





1. Закон электромагнитной индукции в трактовке Максвелла. 
1. Закон электромагнитной индукции в трактовке Максвелла. 
2. Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле.
Описание слайда:
1. Закон электромагнитной индукции в трактовке Максвелла. 1. Закон электромагнитной индукции в трактовке Максвелла. 2. Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле.



Похожие презентации
Mypresentation.ru
Загрузить презентацию