🗊Презентация Лазер. Устройство лазера

Категория: Физика
Нажмите для полного просмотра!
Лазер. Устройство лазера, слайд №1Лазер. Устройство лазера, слайд №2Лазер. Устройство лазера, слайд №3Лазер. Устройство лазера, слайд №4Лазер. Устройство лазера, слайд №5Лазер. Устройство лазера, слайд №6Лазер. Устройство лазера, слайд №7Лазер. Устройство лазера, слайд №8Лазер. Устройство лазера, слайд №9Лазер. Устройство лазера, слайд №10Лазер. Устройство лазера, слайд №11Лазер. Устройство лазера, слайд №12Лазер. Устройство лазера, слайд №13Лазер. Устройство лазера, слайд №14

Вы можете ознакомиться и скачать презентацию на тему Лазер. Устройство лазера. Доклад-сообщение содержит 14 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Лазер
Описание слайда:
Лазер

Слайд 2





 Лазер - это устройство, создающее мощный узконаправленный пучок света. Название «лазер» образовано путём сложения первых букв слов, составляющих английское выражение light amplification by stimulated emission of radiation, что означает «усиление света посредством вынужденного излучения». Лазер создаёт световые лучи такой силы, что они способны прожигать отверстия даже в очень прочных материалах, затрачивая на это лишь доли секунды.
Описание слайда:
Лазер - это устройство, создающее мощный узконаправленный пучок света. Название «лазер» образовано путём сложения первых букв слов, составляющих английское выражение light amplification by stimulated emission of radiation, что означает «усиление света посредством вынужденного излучения». Лазер создаёт световые лучи такой силы, что они способны прожигать отверстия даже в очень прочных материалах, затрачивая на это лишь доли секунды.

Слайд 3





Как устроен лазер

1.Источник энергии, который называют механизмом «накачки» лазера.
2.Рабочее тело лазера.
3.Система зеркал, или оптический резонатор.
Описание слайда:
Как устроен лазер 1.Источник энергии, который называют механизмом «накачки» лазера. 2.Рабочее тело лазера. 3.Система зеркал, или оптический резонатор.

Слайд 4





Источники энергии могут быть разными: электрические, тепловые, химические, световые и др. Их задача - «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера. Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др.
Источники энергии могут быть разными: электрические, тепловые, химические, световые и др. Их задача - «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера. Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др.
Рабочим телом, или лазерными материалами, называют вещества, выполняющие функции активной среды. Собственно в рабочем теле и зарождается лазерный луч
Описание слайда:
Источники энергии могут быть разными: электрические, тепловые, химические, световые и др. Их задача - «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера. Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др. Источники энергии могут быть разными: электрические, тепловые, химические, световые и др. Их задача - «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера. Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др. Рабочим телом, или лазерными материалами, называют вещества, выполняющие функции активной среды. Собственно в рабочем теле и зарождается лазерный луч

Слайд 5





          В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов - в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости. Эту задачу и выполняет механизм накачки лазера. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют световой луч огромной мощности. 
          В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов - в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости. Эту задачу и выполняет механизм накачки лазера. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют световой луч огромной мощности.
Описание слайда:
В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов - в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости. Эту задачу и выполняет механизм накачки лазера. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют световой луч огромной мощности. В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов - в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости. Эту задачу и выполняет механизм накачки лазера. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют световой луч огромной мощности.

Слайд 6





В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин.
В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин.
Рабочее тело помещается в оптический резонатор. Самый простой из них состоит из двух параллельных зеркал, одно из которых полупрозрачное. Часть света оно отражает, а часть пропускает. Отражаясь от зеркал, пучок света возвращается обратно и усиливается. Это процесс повторяется многократно. На выходе из лазера образуется очень мощная световая волна. Зеркал в резонаторе может быть и больше.
Кроме того, в лазерах используют и другие устройства - зеркала, способные менять угол поворота, фильтры, модулятора и др. С их помощью можно изменять длину волны, длительность импульсов и других параметров.
Описание слайда:
В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин. В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин. Рабочее тело помещается в оптический резонатор. Самый простой из них состоит из двух параллельных зеркал, одно из которых полупрозрачное. Часть света оно отражает, а часть пропускает. Отражаясь от зеркал, пучок света возвращается обратно и усиливается. Это процесс повторяется многократно. На выходе из лазера образуется очень мощная световая волна. Зеркал в резонаторе может быть и больше. Кроме того, в лазерах используют и другие устройства - зеркала, способные менять угол поворота, фильтры, модулятора и др. С их помощью можно изменять длину волны, длительность импульсов и других параметров.

Слайд 7


Лазер. Устройство лазера, слайд №7
Описание слайда:

Слайд 8





Изобретение лазера
В 1964 г  стали лауреатами Нобелевской премии по физике, которая была присуждена им за открытие принципа работы квантового генератора на аммиаке (мазера), которое они сделали независимо друг от друга.

     Александр Михайлович Прохоров
Описание слайда:
Изобретение лазера В 1964 г стали лауреатами Нобелевской премии по физике, которая была присуждена им за открытие принципа работы квантового генератора на аммиаке (мазера), которое они сделали независимо друг от друга. Александр Михайлович Прохоров

Слайд 9


Лазер. Устройство лазера, слайд №9
Описание слайда:

Слайд 10


Лазер. Устройство лазера, слайд №10
Описание слайда:

Слайд 11





Применение лазера
Описание слайда:
Применение лазера

Слайд 12





В медицине
Описание слайда:
В медицине

Слайд 13





В военном деле
Описание слайда:
В военном деле

Слайд 14





Спасибо за внимание!
Описание слайда:
Спасибо за внимание!



Похожие презентации
Mypresentation.ru
Загрузить презентацию