🗊 Лазери

Категория: Физика
Нажмите для полного просмотра!
  
  Лазери  , слайд №1  
  Лазери  , слайд №2  
  Лазери  , слайд №3  
  Лазери  , слайд №4  
  Лазери  , слайд №5  
  Лазери  , слайд №6  
  Лазери  , слайд №7  
  Лазери  , слайд №8  
  Лазери  , слайд №9  
  Лазери  , слайд №10  
  Лазери  , слайд №11  
  Лазери  , слайд №12  
  Лазери  , слайд №13  
  Лазери  , слайд №14

Вы можете ознакомиться и скачать Лазери . Презентация содержит 14 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Лазери
Описание слайда:
Лазери

Слайд 2





План
 Загальна інформація
 Класифікація лазерів
 Будова лазера
 Робота лазера
 Види лазерів
 Застосування лазерів
Описание слайда:
План  Загальна інформація Класифікація лазерів  Будова лазера  Робота лазера  Види лазерів  Застосування лазерів

Слайд 3





Загальна інформація
Лазер — джерело когерентного, монохроматичного і вузькоспрямованого електромагнітного випромінювання оптичного діапазону, яке характеризується великою густиною енергії. 
Головний елемент лазера — активне середовище, для утворення якого використовують: вплив світла, електричний розряд у газах, хімічні реакції, бомбардування електронним пучком та ін. методи «накачування». 
Активне середовище розташоване між дзеркалами, які утворюють оптичний резонатор. Лазери отримали широке застосування в наукових дослідженнях, голографії і в техніці.
Описание слайда:
Загальна інформація Лазер — джерело когерентного, монохроматичного і вузькоспрямованого електромагнітного випромінювання оптичного діапазону, яке характеризується великою густиною енергії. Головний елемент лазера — активне середовище, для утворення якого використовують: вплив світла, електричний розряд у газах, хімічні реакції, бомбардування електронним пучком та ін. методи «накачування». Активне середовище розташоване між дзеркалами, які утворюють оптичний резонатор. Лазери отримали широке застосування в наукових дослідженнях, голографії і в техніці.

Слайд 4


  
  Лазери  , слайд №4
Описание слайда:

Слайд 5





Класифікація 
За схемами функціонування

3-рівневі                       квазі-4-рівневі                       4-рівневі
Описание слайда:
Класифікація За схемами функціонування 3-рівневі квазі-4-рівневі 4-рівневі

Слайд 6





За агрегатним станом
За агрегатним станом
          газові                             рідинні                  твердотільні
Описание слайда:
За агрегатним станом За агрегатним станом газові рідинні твердотільні

Слайд 7





За методом отримання інверсії
За методом отримання інверсії



 електронною                                                                           оптичною
 накачкою                                                                                    накачкою
                                 хімічною                         тепловою
                                 накачкою                       накачкою
Описание слайда:
За методом отримання інверсії За методом отримання інверсії електронною оптичною накачкою накачкою хімічною тепловою накачкою накачкою

Слайд 8





Найбільш розповсюдженою є класифікація за фізичними особливостями активного середовища:  
твердотільні
напівпровідникові
волоконні
газові
іонні
молекулярні
рідинні
газодинамічні
хімічні
Описание слайда:
Найбільш розповсюдженою є класифікація за фізичними особливостями активного середовища: твердотільні напівпровідникові волоконні газові іонні молекулярні рідинні газодинамічні хімічні

Слайд 9





Будова лазера
Активне середовище (серце лазера)
Система накачки (джерело енергії)
Оптичний резонатор (система дзеркал)
Описание слайда:
Будова лазера Активне середовище (серце лазера) Система накачки (джерело енергії) Оптичний резонатор (система дзеркал)

Слайд 10





Лазер — джерело світла. У порівнянні з іншими джерелами світла лазер має низку унікальних властивостей, пов'язаних з когерентністю і високою спрямованістю його випромінювання. Випромінювання «нелазерних» джерел світла не має цих особливостей.
Лазер — джерело світла. У порівнянні з іншими джерелами світла лазер має низку унікальних властивостей, пов'язаних з когерентністю і високою спрямованістю його випромінювання. Випромінювання «нелазерних» джерел світла не має цих особливостей.
«Серце лазера» — його активний елемент. В одних лазерів це кристалічний або скляний стрижень циліндричної форми. В інших — запаяна скляна трубка, всередині якої перебуває спеціально підібрана газова суміш. В третіх — кювета зі спеціальною рідиною.
При нагріванні будь-яке тіло починає випромінювати тепло. Однак випромінювання теплового джерела поширюється в усіх напрямках, тобто заповнює тілесний кут 4π стерадіан. Формування спрямованого пучка від такого джерела, здійснюване за допомогою системи діафрагм або оптичних систем, що складаються з лінз і дзеркал, завжди супроводжується втратою енергії. Жодна оптична система не дозволяє одержати на поверхні освітлюваного об'єкта потужність випромінювання більшу, ніж у самім джерелі світла.
Описание слайда:
Лазер — джерело світла. У порівнянні з іншими джерелами світла лазер має низку унікальних властивостей, пов'язаних з когерентністю і високою спрямованістю його випромінювання. Випромінювання «нелазерних» джерел світла не має цих особливостей. Лазер — джерело світла. У порівнянні з іншими джерелами світла лазер має низку унікальних властивостей, пов'язаних з когерентністю і високою спрямованістю його випромінювання. Випромінювання «нелазерних» джерел світла не має цих особливостей. «Серце лазера» — його активний елемент. В одних лазерів це кристалічний або скляний стрижень циліндричної форми. В інших — запаяна скляна трубка, всередині якої перебуває спеціально підібрана газова суміш. В третіх — кювета зі спеціальною рідиною. При нагріванні будь-яке тіло починає випромінювати тепло. Однак випромінювання теплового джерела поширюється в усіх напрямках, тобто заповнює тілесний кут 4π стерадіан. Формування спрямованого пучка від такого джерела, здійснюване за допомогою системи діафрагм або оптичних систем, що складаються з лінз і дзеркал, завжди супроводжується втратою енергії. Жодна оптична система не дозволяє одержати на поверхні освітлюваного об'єкта потужність випромінювання більшу, ніж у самім джерелі світла.

Слайд 11





Робота лазерів
Збуджений атом може мимовільно перейти на один з нижчих рівнів енергії, випромінивши при цьому квант світла. Світлові хвилі, випромінювані нагрітими тілами, формуються саме в результаті таких спонтанних переходів атомів і молекул. Спонтанне випромінювання різних атомів некогерентне. Однак, крім спонтанного випромінювання, існують випромінювальні акти іншого роду. Щоб створити лазер або оптичний квантовий генератор — джерело когерентного світла необхідно:
- робоча речовина з інверсною заселеністю. Тільки тоді можна одержати підсилення світла за рахунок вимушених переходів.
- робочу речовину слід помістити між дзеркалами, які здійснюють зворотний зв'язок.
- підсилення дає робоча речовина, а отже, число збуджених атомів або молекул у робочій речовині повинне бути більшим від певного порогового значення, що залежить від коефіцієнта відбиття напівпрозорого дзеркала.
Описание слайда:
Робота лазерів Збуджений атом може мимовільно перейти на один з нижчих рівнів енергії, випромінивши при цьому квант світла. Світлові хвилі, випромінювані нагрітими тілами, формуються саме в результаті таких спонтанних переходів атомів і молекул. Спонтанне випромінювання різних атомів некогерентне. Однак, крім спонтанного випромінювання, існують випромінювальні акти іншого роду. Щоб створити лазер або оптичний квантовий генератор — джерело когерентного світла необхідно: - робоча речовина з інверсною заселеністю. Тільки тоді можна одержати підсилення світла за рахунок вимушених переходів. - робочу речовину слід помістити між дзеркалами, які здійснюють зворотний зв'язок. - підсилення дає робоча речовина, а отже, число збуджених атомів або молекул у робочій речовині повинне бути більшим від певного порогового значення, що залежить від коефіцієнта відбиття напівпрозорого дзеркала.

Слайд 12





Види лазерів
Рубіновий лазер працює в імпульсному режимі. Існують також лазери неперервної дії. У газових лазерах цього типу робочою речовиною є газ. Атоми робочої речовини збуджуються електричним розрядом. Застосовуються й напівпровідникові лазери безперервної дії. У них енергія для випромінювання запозичиться від електричного струму. Створені дуже потужні газодинамічні лазери неперервної дії на сотні кіловатів. У цих лазерах «перенаселеність» верхніх енергетичних рівнів створюється при розширенні й адіабатному охолодженні надзвукових газових потоків, нагрітих до декількох тисяч Кельвін.
Описание слайда:
Види лазерів Рубіновий лазер працює в імпульсному режимі. Існують також лазери неперервної дії. У газових лазерах цього типу робочою речовиною є газ. Атоми робочої речовини збуджуються електричним розрядом. Застосовуються й напівпровідникові лазери безперервної дії. У них енергія для випромінювання запозичиться від електричного струму. Створені дуже потужні газодинамічні лазери неперервної дії на сотні кіловатів. У цих лазерах «перенаселеність» верхніх енергетичних рівнів створюється при розширенні й адіабатному охолодженні надзвукових газових потоків, нагрітих до декількох тисяч Кельвін.

Слайд 13


  
  Лазери  , слайд №13
Описание слайда:

Слайд 14





Застосування
Великі можливості відкриваються перед лазерною технікою в біології й медицині. Лазерний промінь застосовується не тільки в хірургії як скальпель, але й у терапії. Інтенсивно розвиваються методи лазерної локації й зв'язку. Локація Місяця за допомогою рубінових лазерів і спеціальних кутових відбивачів, доставлених на Місяць, дозволила збільшити точність виміру відстаней Земля — Місяць до декількох см. Отримано обнадійливі результати в спрямованому стимулюванні хімічних реакцій. За допомогою лазерів можна вибірково збуджувати одне із власних коливань молекули. Виявилося, що при цьому молекули здатні вступати в реакції, які не можна або важко стимулювати звичайним нагріванням. За допомогою лазерної техніки інтенсивно розробляються оптичні методи обробки передачі й зберігання інформації, методи голографічного запису інформації, кольорове проекційне телебачення.
Описание слайда:
Застосування Великі можливості відкриваються перед лазерною технікою в біології й медицині. Лазерний промінь застосовується не тільки в хірургії як скальпель, але й у терапії. Інтенсивно розвиваються методи лазерної локації й зв'язку. Локація Місяця за допомогою рубінових лазерів і спеціальних кутових відбивачів, доставлених на Місяць, дозволила збільшити точність виміру відстаней Земля — Місяць до декількох см. Отримано обнадійливі результати в спрямованому стимулюванні хімічних реакцій. За допомогою лазерів можна вибірково збуджувати одне із власних коливань молекули. Виявилося, що при цьому молекули здатні вступати в реакції, які не можна або важко стимулювати звичайним нагріванням. За допомогою лазерної техніки інтенсивно розробляються оптичні методи обробки передачі й зберігання інформації, методи голографічного запису інформації, кольорове проекційне телебачення.



Теги Лазери
Похожие презентации
Mypresentation.ru
Загрузить презентацию