🗊Магнитное поле Выполнила: Кадичева Анна

Категория: Физика
Нажмите для полного просмотра!
Магнитное поле  Выполнила: Кадичева Анна, слайд №1Магнитное поле  Выполнила: Кадичева Анна, слайд №2Магнитное поле  Выполнила: Кадичева Анна, слайд №3Магнитное поле  Выполнила: Кадичева Анна, слайд №4Магнитное поле  Выполнила: Кадичева Анна, слайд №5Магнитное поле  Выполнила: Кадичева Анна, слайд №6Магнитное поле  Выполнила: Кадичева Анна, слайд №7Магнитное поле  Выполнила: Кадичева Анна, слайд №8Магнитное поле  Выполнила: Кадичева Анна, слайд №9Магнитное поле  Выполнила: Кадичева Анна, слайд №10Магнитное поле  Выполнила: Кадичева Анна, слайд №11Магнитное поле  Выполнила: Кадичева Анна, слайд №12Магнитное поле  Выполнила: Кадичева Анна, слайд №13Магнитное поле  Выполнила: Кадичева Анна, слайд №14Магнитное поле  Выполнила: Кадичева Анна, слайд №15Магнитное поле  Выполнила: Кадичева Анна, слайд №16

Вы можете ознакомиться и скачать Магнитное поле Выполнила: Кадичева Анна. Презентация содержит 16 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Магнитное поле
Выполнила: Кадичева Анна
Описание слайда:
Магнитное поле Выполнила: Кадичева Анна

Слайд 2





Здравствуй любопытный ученик!
С первых дней твоей жизни ты хочешь исследовать и понять всё, что происходит вокруг тебя. Многие явления, которые на первый взгляд кажутся тебе необъяснимыми, может растолковать физика. Например, почему притягивает магнит? Почему в проводниках течёт ток? Откуда в телевизоре появляются изображения? И многое, многое другое…
Иди вперёд и сможешь найти ответы.
Описание слайда:
Здравствуй любопытный ученик! С первых дней твоей жизни ты хочешь исследовать и понять всё, что происходит вокруг тебя. Многие явления, которые на первый взгляд кажутся тебе необъяснимыми, может растолковать физика. Например, почему притягивает магнит? Почему в проводниках течёт ток? Откуда в телевизоре появляются изображения? И многое, многое другое… Иди вперёд и сможешь найти ответы.

Слайд 3





ПЛАН
Магнитное поле и его графическое изображение
Неоднородное и однородное магнитное поле
Правило буравчика
Правило правой руки
Действие магнитного поля на электрический ток
Правило левой руки
Индукция магнитного поля
Магнитный поток
Явление электромагнитной индукции
Вопросы и задания
Список литературы
Описание слайда:
ПЛАН Магнитное поле и его графическое изображение Неоднородное и однородное магнитное поле Правило буравчика Правило правой руки Действие магнитного поля на электрический ток Правило левой руки Индукция магнитного поля Магнитный поток Явление электромагнитной индукции Вопросы и задания Список литературы

Слайд 4





Магнитное поле и его графическое изображение
	Поскольку электрический ток – это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными. Для наглядного представления магнитного поля мы пользовались магнитными линиями. Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. 
	На рисунке показано магнитная линия (как прямолинейная, так и криволинейная).
	По картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля.
Описание слайда:
Магнитное поле и его графическое изображение Поскольку электрический ток – это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными. Для наглядного представления магнитного поля мы пользовались магнитными линиями. Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. На рисунке показано магнитная линия (как прямолинейная, так и криволинейная). По картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля.

Слайд 5





Неоднородное и однородное магнитное поле
	Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называют неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке. В некоторой ограниченной области пространства можно создать однородное магнитное поле, т.е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
	Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и наплавлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам – то точками.
Описание слайда:
Неоднородное и однородное магнитное поле Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называют неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке. В некоторой ограниченной области пространства можно создать однородное магнитное поле, т.е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению. Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и наплавлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам – то точками.

Слайд 6





Правило буравчика 
	Известно, что направление линий магнитного поля тока связано с направлением тока в проводнике. Эта связь может быть выражена простым правилом, которое называется правилом буравчика.
Правило буравчика заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.
С помощью правила буравчика по направлению тока можно определить направлений линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля – направление тока, создающего это поле.
Описание слайда:
Правило буравчика Известно, что направление линий магнитного поля тока связано с направлением тока в проводнике. Эта связь может быть выражена простым правилом, которое называется правилом буравчика. Правило буравчика заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. С помощью правила буравчика по направлению тока можно определить направлений линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля – направление тока, создающего это поле.

Слайд 7





Правило правой руки
	Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки.
	Это правило читается так: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
	Соленоид, как и магнит, имеет полосы: тот конец соленоида, из которого магнитные линии выходят, называется северным полюсом, а тот, в который входят, - южным.
	Зная направления тока в соленоиде, по правилу правой руки можно определить направление магнитных линий внутри него, а значит, и его магнитные полюсы и наоборот.
	Правило правой руки можно применять и для определения направления линий магнитного поля в центре одиночного витка с током.
Описание слайда:
Правило правой руки Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки. Это правило читается так: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида. Соленоид, как и магнит, имеет полосы: тот конец соленоида, из которого магнитные линии выходят, называется северным полюсом, а тот, в который входят, - южным. Зная направления тока в соленоиде, по правилу правой руки можно определить направление магнитных линий внутри него, а значит, и его магнитные полюсы и наоборот. Правило правой руки можно применять и для определения направления линий магнитного поля в центре одиночного витка с током.

Слайд 8





Действие магнитного поля на электрический ток 
	На всякий проводник с током. Помещенный в магнитное поле и не совпадающий с его магнитными линиями, это поле действует с некоторой силой. Действие магнитного поля на проводник с током может быть использовано для обнаружения магнитного поля в данной области пространства.
	Магнитное поле создается электрическим током и обнаруживается по его действию на электрический ток. Направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.
Описание слайда:
Действие магнитного поля на электрический ток На всякий проводник с током. Помещенный в магнитное поле и не совпадающий с его магнитными линиями, это поле действует с некоторой силой. Действие магнитного поля на проводник с током может быть использовано для обнаружения магнитного поля в данной области пространства. Магнитное поле создается электрическим током и обнаруживается по его действию на электрический ток. Направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

Слайд 9





Правило левой руки
Описание слайда:
Правило левой руки

Слайд 10






	Правило:если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно зараженной частицы (или против движения отрицательно заряженной), то отставленный на 900 большой палец покажет направление действующей на частицу силы.
Описание слайда:
Правило:если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно зараженной частицы (или против движения отрицательно заряженной), то отставленный на 900 большой палец покажет направление действующей на частицу силы.

Слайд 11





Индукция магнитного поля
	Магнитное поле характеризуется векторной физической величиной, которая обозначается символом В и называется индукцией магнитного поля (или магнитной индукцией).
	Мы знаем, что магнитное поле может действовать с определенной силой на помещенный в него проводник с током. Отношение же модуля силы F к длине проводника l и силы тока I есть величина постоянная. Она не зависит ни от длины проводника, ни от силы тока в нем, это отношение зависит только от поля и может служить его количественной характеристикой. Эта величина и применяется за модуль вектора магнитной индукции:
					В = 
	Таким образом, модуль вектора магнитной индукции В равен отношению модуля силы F , с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока I в проводнике и его длине l . В СИ единица магнитной индукции называется тесла (Тл) в честь югославского электроника Николы Тесла.
	Линиями магнитной индукции называется линии, касательные к которым в каждой точке поля совпадают с направлением вектора магнитной индукции.
Описание слайда:
Индукция магнитного поля Магнитное поле характеризуется векторной физической величиной, которая обозначается символом В и называется индукцией магнитного поля (или магнитной индукцией). Мы знаем, что магнитное поле может действовать с определенной силой на помещенный в него проводник с током. Отношение же модуля силы F к длине проводника l и силы тока I есть величина постоянная. Она не зависит ни от длины проводника, ни от силы тока в нем, это отношение зависит только от поля и может служить его количественной характеристикой. Эта величина и применяется за модуль вектора магнитной индукции: В = Таким образом, модуль вектора магнитной индукции В равен отношению модуля силы F , с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока I в проводнике и его длине l . В СИ единица магнитной индукции называется тесла (Тл) в честь югославского электроника Николы Тесла. Линиями магнитной индукции называется линии, касательные к которым в каждой точке поля совпадают с направлением вектора магнитной индукции.

Слайд 12





Магнитный поток
	На рисунке изображен проволочный контур, помещенный в однородное магнитное поле. Принято говорить, что контур в магнитном поле пронизывается определенными магнитным потоком Ф, или потоком вектора магнитной индукции. Поскольку поток пропорционален индукции, то при ее увеличении в п раз во столько же раз возрастает и магнитный поток, пронизывающий площадь S данного контура. Если плоскость контура перпендикулярна к линиям магнитной индукции, то при данной индукции В1 поток Ф, пронизывающий ограниченную этим контуром площадь S, максимален. При вращении контура вокруг оси проходящий сквозь него поток уменьшается и становиться равным нулю, когда плоскость контура располагается параллельно  линиям магнитной индукции.Таким образом, магнитный проток, пронизывающий площадь контура, меняется при изменении модуля вектора магнитной индукции В (б), площадь контура S(в), и при вращении контура (г), т.е. При изменении его ориентации по отношению к линиям индукции магнитного поля.
Описание слайда:
Магнитный поток На рисунке изображен проволочный контур, помещенный в однородное магнитное поле. Принято говорить, что контур в магнитном поле пронизывается определенными магнитным потоком Ф, или потоком вектора магнитной индукции. Поскольку поток пропорционален индукции, то при ее увеличении в п раз во столько же раз возрастает и магнитный поток, пронизывающий площадь S данного контура. Если плоскость контура перпендикулярна к линиям магнитной индукции, то при данной индукции В1 поток Ф, пронизывающий ограниченную этим контуром площадь S, максимален. При вращении контура вокруг оси проходящий сквозь него поток уменьшается и становиться равным нулю, когда плоскость контура располагается параллельно линиям магнитной индукции.Таким образом, магнитный проток, пронизывающий площадь контура, меняется при изменении модуля вектора магнитной индукции В (б), площадь контура S(в), и при вращении контура (г), т.е. При изменении его ориентации по отношению к линиям индукции магнитного поля.

Слайд 13





Явление электромагнитной индукции
	Известно, что вокруг электрического тока всегда существует магнитное поле. Электрический ток и магнитное поле неотделимы друг от друга.
	Индукционный ток в проводнике представляет собой такое же упорядоченное движение электронов, как и ток, полученный от гальванического элемента или аккумулятора.
	При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока.
Описание слайда:
Явление электромагнитной индукции Известно, что вокруг электрического тока всегда существует магнитное поле. Электрический ток и магнитное поле неотделимы друг от друга. Индукционный ток в проводнике представляет собой такое же упорядоченное движение электронов, как и ток, полученный от гальванического элемента или аккумулятора. При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока.

Слайд 14





Вопросы и задания
Чем порождается магнитное поле?
Что такое магнитные линии?
Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля? однородного магнитного поля?
Сформулируйте правило буравчика.
Что можно определить ,используя правило буравчика?
Сформулируйте правило правой руки для соленоида.
На рисунке 1 показаны линии магнитного поля  вокруг проводников с током .Проводники изображены кругами.Условными знаками обозначьте направление токов в проводниках, используя правило буравчика.
Направление тока в витках обмотки подковообразного магнита показано стрелками. Определите полюса  магнита ( рис. 2 ).
Что можно определить ,пользуясь правилом левой руки .
Что называется линиями магнитной индукции ?
В однородном магнитном поле перпендикулярно  линиям магнитной индукции поместили прямолинейный проводник ,по которому протекает ток с силой 4А.Определите индукцию этого поля ,если оно действует с силой 0,2 Н на каждый 10 см длины проводника .
От чего зависит магнитный поток, пронизывающий площадь плоского контура, помещенного в однородное магнитное поле
Описание слайда:
Вопросы и задания Чем порождается магнитное поле? Что такое магнитные линии? Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля? однородного магнитного поля? Сформулируйте правило буравчика. Что можно определить ,используя правило буравчика? Сформулируйте правило правой руки для соленоида. На рисунке 1 показаны линии магнитного поля вокруг проводников с током .Проводники изображены кругами.Условными знаками обозначьте направление токов в проводниках, используя правило буравчика. Направление тока в витках обмотки подковообразного магнита показано стрелками. Определите полюса магнита ( рис. 2 ). Что можно определить ,пользуясь правилом левой руки . Что называется линиями магнитной индукции ? В однородном магнитном поле перпендикулярно линиям магнитной индукции поместили прямолинейный проводник ,по которому протекает ток с силой 4А.Определите индукцию этого поля ,если оно действует с силой 0,2 Н на каждый 10 см длины проводника . От чего зависит магнитный поток, пронизывающий площадь плоского контура, помещенного в однородное магнитное поле

Слайд 15





Список литературы
	Учебник для общеобразовательных учебных заведений – Физика 9 класс, Перышкин А.В. и Гутник Е.М.
А если тебе показалось этого мало, можешь порешать ещё: 
     «Сборник задач по физике» (В.И. Лукашик, Е.В. Иванова)
     «Физика. Задачник.»(Н.И. Гольдфарб)
     «Физика. Задачник.» (О.Ф. Кабардин, В.А. Орлов, А.Р. Зильберман)
…или побольше узнать:
     «Физика». Краткий справочник школьнника.
     «Физика». Большой справочник для школьников и поступающих в вузы.
     «Физика». Словарь школьника.
     «Физика. Справочник школьника и студента.» (под редакцией проф. Рудольфа         Гёбеля)
     «Физика». Школьная энциклопедия.
     «Большой справочник школьника».
      «Учебный справочник школьника».
Описание слайда:
Список литературы Учебник для общеобразовательных учебных заведений – Физика 9 класс, Перышкин А.В. и Гутник Е.М. А если тебе показалось этого мало, можешь порешать ещё: «Сборник задач по физике» (В.И. Лукашик, Е.В. Иванова) «Физика. Задачник.»(Н.И. Гольдфарб) «Физика. Задачник.» (О.Ф. Кабардин, В.А. Орлов, А.Р. Зильберман) …или побольше узнать: «Физика». Краткий справочник школьнника. «Физика». Большой справочник для школьников и поступающих в вузы. «Физика». Словарь школьника. «Физика. Справочник школьника и студента.» (под редакцией проф. Рудольфа Гёбеля) «Физика». Школьная энциклопедия. «Большой справочник школьника». «Учебный справочник школьника».

Слайд 16


Магнитное поле  Выполнила: Кадичева Анна, слайд №16
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию