Описание слайда:
Первое теоретическое объяснение сверхпроводимости было дано в 1935 году братьями Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга — Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.
Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I рода (к ним, в частности, относится ртуть) и II рода (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.
Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².
В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.
В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La—Sr—Cu—O) испытывают скачок сопротивления практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y—Ba—Cu—O). По состоянию на 1 января 2006 года, рекорд принадлежит керамическому соединению Hg—Ba—Ca—Cu—O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.
В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H2S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70 °C).
В 2017 году было обнаружено явление сверхпроводимости графена толщиною в два атомных слоя, повернутых друг относительно друга на угол 1.1°.