Описание слайда:
Прискорення електронів по схемі розрізного мікротрону або схожою з нею в даний час використовується для генерації пучків електронів великої енергії в безперервному режимі. Справа в тому , що прискорювачі , як правило , працюють в імпульсному режимі , тобто , наприклад , електрони в них прискорюються протягом короткого часового проміжку Δt , коли можливе прискорення , після чого слідує порівняно тривала пауза для повернення в режим нового циклу прискорення . Період часу Т між циклами прискорення зазвичай багато більше тривалості електронного імпульсу ( Т >> Δt ) . Характерна величина D = Δt / T , званої робочим циклом , ≈ 10 -3. Таким чином , для фізичних експериментів вдається використовувати лише ≈0.1 % часу роботи прискорювача. Прискорення електронів по схемі розрізного мікротрону дозволяє здійснити безперервний режим роботи прискорювача , коли D рівний або близький до одиниці . Це досягається безперервністю режиму роботи основної прискорювальної структури (лінійного прискорювача ) , розташованої між розділеними частинами постійного магніта мікротрону . У мікротроні безперервної дії вся прискорювальна камера заповнена електронами, що знаходяться на всіх стадіях прискорення - від початкової (тобто з найменшою енергією ) до максимально можливої. Безперервний режим роботи такого прискорювача дозволяє використовувати для експериментів весь час його роботи і , тим самим , підвищити кількість актів досліджуваного взаємодії за фіксований час в 1/D≈103 раз , що особливо важливо для дослідження рідкісних подій.
Прискорення електронів по схемі розрізного мікротрону або схожою з нею в даний час використовується для генерації пучків електронів великої енергії в безперервному режимі. Справа в тому , що прискорювачі , як правило , працюють в імпульсному режимі , тобто , наприклад , електрони в них прискорюються протягом короткого часового проміжку Δt , коли можливе прискорення , після чого слідує порівняно тривала пауза для повернення в режим нового циклу прискорення . Період часу Т між циклами прискорення зазвичай багато більше тривалості електронного імпульсу ( Т >> Δt ) . Характерна величина D = Δt / T , званої робочим циклом , ≈ 10 -3. Таким чином , для фізичних експериментів вдається використовувати лише ≈0.1 % часу роботи прискорювача. Прискорення електронів по схемі розрізного мікротрону дозволяє здійснити безперервний режим роботи прискорювача , коли D рівний або близький до одиниці . Це досягається безперервністю режиму роботи основної прискорювальної структури (лінійного прискорювача ) , розташованої між розділеними частинами постійного магніта мікротрону . У мікротроні безперервної дії вся прискорювальна камера заповнена електронами, що знаходяться на всіх стадіях прискорення - від початкової (тобто з найменшою енергією ) до максимально можливої. Безперервний режим роботи такого прискорювача дозволяє використовувати для експериментів весь час його роботи і , тим самим , підвищити кількість актів досліджуваного взаємодії за фіксований час в 1/D≈103 раз , що особливо важливо для дослідження рідкісних подій.