🗊Презентация Основы вейвлет-преобразования сигналов

Категория: Технология
Нажмите для полного просмотра!
Основы вейвлет-преобразования сигналов, слайд №1Основы вейвлет-преобразования сигналов, слайд №2Основы вейвлет-преобразования сигналов, слайд №3Основы вейвлет-преобразования сигналов, слайд №4Основы вейвлет-преобразования сигналов, слайд №5Основы вейвлет-преобразования сигналов, слайд №6Основы вейвлет-преобразования сигналов, слайд №7Основы вейвлет-преобразования сигналов, слайд №8Основы вейвлет-преобразования сигналов, слайд №9Основы вейвлет-преобразования сигналов, слайд №10Основы вейвлет-преобразования сигналов, слайд №11Основы вейвлет-преобразования сигналов, слайд №12Основы вейвлет-преобразования сигналов, слайд №13Основы вейвлет-преобразования сигналов, слайд №14Основы вейвлет-преобразования сигналов, слайд №15Основы вейвлет-преобразования сигналов, слайд №16Основы вейвлет-преобразования сигналов, слайд №17Основы вейвлет-преобразования сигналов, слайд №18Основы вейвлет-преобразования сигналов, слайд №19Основы вейвлет-преобразования сигналов, слайд №20Основы вейвлет-преобразования сигналов, слайд №21Основы вейвлет-преобразования сигналов, слайд №22Основы вейвлет-преобразования сигналов, слайд №23Основы вейвлет-преобразования сигналов, слайд №24Основы вейвлет-преобразования сигналов, слайд №25Основы вейвлет-преобразования сигналов, слайд №26Основы вейвлет-преобразования сигналов, слайд №27Основы вейвлет-преобразования сигналов, слайд №28Основы вейвлет-преобразования сигналов, слайд №29Основы вейвлет-преобразования сигналов, слайд №30Основы вейвлет-преобразования сигналов, слайд №31Основы вейвлет-преобразования сигналов, слайд №32Основы вейвлет-преобразования сигналов, слайд №33Основы вейвлет-преобразования сигналов, слайд №34Основы вейвлет-преобразования сигналов, слайд №35Основы вейвлет-преобразования сигналов, слайд №36Основы вейвлет-преобразования сигналов, слайд №37Основы вейвлет-преобразования сигналов, слайд №38Основы вейвлет-преобразования сигналов, слайд №39Основы вейвлет-преобразования сигналов, слайд №40

Содержание

Вы можете ознакомиться и скачать презентацию на тему Основы вейвлет-преобразования сигналов. Доклад-сообщение содержит 40 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





ОСНОВЫ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ СИГНАЛОВ 
Ни одна вещь не возникает и не уничтожается, но каждая составляется из смешения существующих вещей или выделяется из них.
Анаксагор. Древнегреческий философ, IV в.д.н.э.
Описание слайда:
ОСНОВЫ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ СИГНАЛОВ Ни одна вещь не возникает и не уничтожается, но каждая составляется из смешения существующих вещей или выделяется из них. Анаксагор. Древнегреческий философ, IV в.д.н.э.

Слайд 2





ВВЕДЕНИЕ
Вейвлет – преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье. 
Термин "вейвлет" (wavelet) в переводе с английского означает "маленькая (короткая) волна". 
Вейвлеты - это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени.
Описание слайда:
ВВЕДЕНИЕ Вейвлет – преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье. Термин "вейвлет" (wavelet) в переводе с английского означает "маленькая (короткая) волна". Вейвлеты - это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени.

Слайд 3





Вейвлет-преобразования (WT) подразделяют на
дискретное (DWT) 
непрерывное (CWT). 
DWT используется для преобразований и кодирования сигналов, 
CWT - для анализа сигналов. 
Вейвлет-преобразования в настоящее время принимаются на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье.
Описание слайда:
Вейвлет-преобразования (WT) подразделяют на дискретное (DWT) непрерывное (CWT). DWT используется для преобразований и кодирования сигналов, CWT - для анализа сигналов. Вейвлет-преобразования в настоящее время принимаются на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье.

Слайд 4





Вейвлеты имеют вид коротких волновых пакетов с нулевым интегральным значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения).
Вейвлеты имеют вид коротких волновых пакетов с нулевым интегральным значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения).
По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими (синусоидальными) функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.
Описание слайда:
Вейвлеты имеют вид коротких волновых пакетов с нулевым интегральным значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). Вейвлеты имеют вид коротких волновых пакетов с нулевым интегральным значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими (синусоидальными) функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

Слайд 5





Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только общую частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения об определенных локальных координатах, на которых проявляют себя те или иные группы частотных составляющих, или на которых происходят быстрые изменения частотных составляющих сигнала 
Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только общую частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения об определенных локальных координатах, на которых проявляют себя те или иные группы частотных составляющих, или на которых происходят быстрые изменения частотных составляющих сигнала
Описание слайда:
Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только общую частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения об определенных локальных координатах, на которых проявляют себя те или иные группы частотных составляющих, или на которых происходят быстрые изменения частотных составляющих сигнала Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только общую частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения об определенных локальных координатах, на которых проявляют себя те или иные группы частотных составляющих, или на которых происходят быстрые изменения частотных составляющих сигнала

Слайд 6





Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии для решения любых задач. 
Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии для решения любых задач. 
Но оно может существенно расширить инструментальную базу информационных технологий обработки данных.
Описание слайда:
Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии для решения любых задач. Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии для решения любых задач. Но оно может существенно расширить инструментальную базу информационных технологий обработки данных.

Слайд 7





Преобразование Фурье
   Можно отметить ряд недостатков разложения сигналов в ряды Фурье, которые привели к появлению оконного преобразования Фурье и стимулировали развитие вейвлетного преобразования. Основные из них:
Ограниченная информативность анализа нестационарных сигналов и практически полное отсутствие возможностей анализа их особенностей (сингулярностей), т.к. в частотной области происходит «размазывание» особенностей сигналов (разрывов, ступенек, пиков и т.п.) по всему частотному диапазону спектра. 
Гармонические базисные функции разложения не способны в принципе отображать перепады сигналов с бесконечной крутизной типа прямоугольных импульсов, т.к. для этого требуется бесконечно большое число членов ряда
Преобразование Фурье отображает глобальные сведения о частотах исследуемого сигнала и не дает представления о локальных свойствах сигнала при быстрых временных изменения его спектрального состава. вычисляются интегрированием по всему интервалу задания сигнала.
Описание слайда:
Преобразование Фурье Можно отметить ряд недостатков разложения сигналов в ряды Фурье, которые привели к появлению оконного преобразования Фурье и стимулировали развитие вейвлетного преобразования. Основные из них: Ограниченная информативность анализа нестационарных сигналов и практически полное отсутствие возможностей анализа их особенностей (сингулярностей), т.к. в частотной области происходит «размазывание» особенностей сигналов (разрывов, ступенек, пиков и т.п.) по всему частотному диапазону спектра. Гармонические базисные функции разложения не способны в принципе отображать перепады сигналов с бесконечной крутизной типа прямоугольных импульсов, т.к. для этого требуется бесконечно большое число членов ряда Преобразование Фурье отображает глобальные сведения о частотах исследуемого сигнала и не дает представления о локальных свойствах сигнала при быстрых временных изменения его спектрального состава. вычисляются интегрированием по всему интервалу задания сигнала.

Слайд 8





Оконное преобразование Фурье
 Частичным выходом из этой ситуации является оконное преобразование Фурье с движущейся по сигналу оконной функцией, имеющей компактный носитель. 
Временной интервал сигнала при большой его длительности разделяется на подинтервалы, и преобразование Фурье выполняется последовательно для каждого подинтервала в отдельности. Тем самым осуществляется переход к частотно-временному (частотно-координатному) представлению сигналов, при этом в пределах каждого подинтервала сигнал "считается" стационарным
Описание слайда:
Оконное преобразование Фурье Частичным выходом из этой ситуации является оконное преобразование Фурье с движущейся по сигналу оконной функцией, имеющей компактный носитель. Временной интервал сигнала при большой его длительности разделяется на подинтервалы, и преобразование Фурье выполняется последовательно для каждого подинтервала в отдельности. Тем самым осуществляется переход к частотно-временному (частотно-координатному) представлению сигналов, при этом в пределах каждого подинтервала сигнал "считается" стационарным

Слайд 9


Основы вейвлет-преобразования сигналов, слайд №9
Описание слайда:

Слайд 10





По спектру сигнала в целом можно судить о наличии в его составе гармонических колебаний на трех частотах. Оконное преобразование не только подтверждает данное заключение, но и показывает конкретную локальность колебаний по интервалу сигнала и соотношение между амплитудами этих колебаний. 
По спектру сигнала в целом можно судить о наличии в его составе гармонических колебаний на трех частотах. Оконное преобразование не только подтверждает данное заключение, но и показывает конкретную локальность колебаний по интервалу сигнала и соотношение между амплитудами этих колебаний.
Описание слайда:
По спектру сигнала в целом можно судить о наличии в его составе гармонических колебаний на трех частотах. Оконное преобразование не только подтверждает данное заключение, но и показывает конкретную локальность колебаний по интервалу сигнала и соотношение между амплитудами этих колебаний. По спектру сигнала в целом можно судить о наличии в его составе гармонических колебаний на трех частотах. Оконное преобразование не только подтверждает данное заключение, но и показывает конкретную локальность колебаний по интервалу сигнала и соотношение между амплитудами этих колебаний.

Слайд 11





Принцип вейвлет-преобразования
 Гармонические базисные функции преобразования Фурье предельно локализованы в частотной области (до импульсных функций Дирака при Т  ) и не локализованы во временной (определены во всем временном интервале от - до ). 
Их противоположностью являются импульсные базисные функции типа импульсов Кронекера, которые предельно локализованы во временной области и "размыты" по всему частотному диапазону
Описание слайда:
Принцип вейвлет-преобразования Гармонические базисные функции преобразования Фурье предельно локализованы в частотной области (до импульсных функций Дирака при Т  ) и не локализованы во временной (определены во всем временном интервале от - до ). Их противоположностью являются импульсные базисные функции типа импульсов Кронекера, которые предельно локализованы во временной области и "размыты" по всему частотному диапазону

Слайд 12





Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления. 
Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления.
Описание слайда:
Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления. Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления.

Слайд 13






Функция изменения частотной независимой переменной в спектральном представлении сигналов отображается во временном представлении растяжением/сжатием сигнала. Для вейвлетного базиса это можно выполнить функцией типа y(t) => y(amt), a = const, m = 0, 1, … , M, Однако локальность функции y(t) на временной оси требует дополнительной независимой переменной последовательных переносов (сдвигов) функции y(t) вдоль оси, типа y(t) => y(t+k). C учетом обеих условий одновременно структура базисной функции может быть принята следующей: 
y(t) => y(amt+k).
Описание слайда:
Функция изменения частотной независимой переменной в спектральном представлении сигналов отображается во временном представлении растяжением/сжатием сигнала. Для вейвлетного базиса это можно выполнить функцией типа y(t) => y(amt), a = const, m = 0, 1, … , M, Однако локальность функции y(t) на временной оси требует дополнительной независимой переменной последовательных переносов (сдвигов) функции y(t) вдоль оси, типа y(t) => y(t+k). C учетом обеих условий одновременно структура базисной функции может быть принята следующей: y(t) => y(amt+k).

Слайд 14





Отсюда следует, что произвольная функция пространства может быть представлена в виде ряда (разложения по базису ymk(t)):
Отсюда следует, что произвольная функция пространства может быть представлена в виде ряда (разложения по базису ymk(t)):
Описание слайда:
Отсюда следует, что произвольная функция пространства может быть представлена в виде ряда (разложения по базису ymk(t)): Отсюда следует, что произвольная функция пространства может быть представлена в виде ряда (разложения по базису ymk(t)):

Слайд 15





Простой пример: функции Хаара
Описание слайда:
Простой пример: функции Хаара

Слайд 16





Вейвлетный спектр ,
в отличие от преобразования Фурье, является двумерным и определяет двумерную поверхность в пространстве переменных m и k. При графическом представлении параметр растяжения/сжатия спектра m откладывается по оси абсцисс, параметр локализации k по оси ординат – оси независимой переменной сигнала. 
Математику процесса вейвлетного разложения сигнала в упрощенной форме рассмотрим на примере разложения сигнала s(t) вейвлетом Хаара с тремя последовательными по масштабу m вейвлетными функциями с параметром а=2, при этом сам сигнал s(t) образуем суммированием этих же вейвлетных функций с одинаковой амплитудой с разным сдвигом от нуля
Описание слайда:
Вейвлетный спектр , в отличие от преобразования Фурье, является двумерным и определяет двумерную поверхность в пространстве переменных m и k. При графическом представлении параметр растяжения/сжатия спектра m откладывается по оси абсцисс, параметр локализации k по оси ординат – оси независимой переменной сигнала. Математику процесса вейвлетного разложения сигнала в упрощенной форме рассмотрим на примере разложения сигнала s(t) вейвлетом Хаара с тремя последовательными по масштабу m вейвлетными функциями с параметром а=2, при этом сам сигнал s(t) образуем суммированием этих же вейвлетных функций с одинаковой амплитудой с разным сдвигом от нуля

Слайд 17


Основы вейвлет-преобразования сигналов, слайд №17
Описание слайда:

Слайд 18


Основы вейвлет-преобразования сигналов, слайд №18
Описание слайда:

Слайд 19





На рис. приведен пример графического отображения вейвлетной поверхности реального физического процесса. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. 
На рис. приведен пример графического отображения вейвлетной поверхности реального физического процесса. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. 
Поверхность изображается на рисунках, как правило, в виде изолиний или условными цветами. Для расширения диапазона масштабов может применяться логарифмическая шкала
Описание слайда:
На рис. приведен пример графического отображения вейвлетной поверхности реального физического процесса. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. На рис. приведен пример графического отображения вейвлетной поверхности реального физического процесса. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. Поверхность изображается на рисунках, как правило, в виде изолиний или условными цветами. Для расширения диапазона масштабов может применяться логарифмическая шкала

Слайд 20





ОСНОВЫ ВЕЙВЛЕТ - ПРЕОБРАЗОВАНИЯ 
В основе вейвлет-преобразований, в общем случае, лежит использование двух непрерывных, взаимозависимых и интегрируемых по независимой переменной функций: 
Вейвлет-функции (t), как psi-функции времени с нулевым значением интеграла и частотным фурье-образом (ω). Этой функцией, которую обычно и называют вейвлетом, выделяются детали сигнала и его локальные особенности. 
Масштабирующей функции φ(t), как временной скейлинг-функции phi с единичным значением интеграла, с помощью которой выполняется грубое приближение (аппроксимация) сигнала.
Описание слайда:
ОСНОВЫ ВЕЙВЛЕТ - ПРЕОБРАЗОВАНИЯ В основе вейвлет-преобразований, в общем случае, лежит использование двух непрерывных, взаимозависимых и интегрируемых по независимой переменной функций: Вейвлет-функции (t), как psi-функции времени с нулевым значением интеграла и частотным фурье-образом (ω). Этой функцией, которую обычно и называют вейвлетом, выделяются детали сигнала и его локальные особенности. Масштабирующей функции φ(t), как временной скейлинг-функции phi с единичным значением интеграла, с помощью которой выполняется грубое приближение (аппроксимация) сигнала.

Слайд 21





В качестве анализирующих вейвлетов обычно выбираются функции, хорошо локализованные и во временной, и в частотной области. Пример временного и частотного образа функции приведен на рис. 
В качестве анализирующих вейвлетов обычно выбираются функции, хорошо локализованные и во временной, и в частотной области. Пример временного и частотного образа функции приведен на рис.
Описание слайда:
В качестве анализирующих вейвлетов обычно выбираются функции, хорошо локализованные и во временной, и в частотной области. Пример временного и частотного образа функции приведен на рис. В качестве анализирующих вейвлетов обычно выбираются функции, хорошо локализованные и во временной, и в частотной области. Пример временного и частотного образа функции приведен на рис.

Слайд 22





Непрерывное вейвлет-преобразование  (НВП, CWT- Continious Wavelet Transform)
Допустим, что мы имеем функции s(t) с конечной энергией (нормой) в пространстве L2(R), определенные по всей действительной оси R(-, ). Для финитных сигналов с конечной энергией средние значения сигналов, как и любых других функций из пространства L2(R), должны стремиться к нулю на ±.
Непрерывным вейвлет-преобразованием (или вейвлетным образом) функции s(t)  L2(R) называют функцию двух переменных:
		С(a,b) = s(t), ψ(a,b,t) =                        ,  
	a, b  R,  a ≠ 0.
Описание слайда:
Непрерывное вейвлет-преобразование (НВП, CWT- Continious Wavelet Transform) Допустим, что мы имеем функции s(t) с конечной энергией (нормой) в пространстве L2(R), определенные по всей действительной оси R(-, ). Для финитных сигналов с конечной энергией средние значения сигналов, как и любых других функций из пространства L2(R), должны стремиться к нулю на ±. Непрерывным вейвлет-преобразованием (или вейвлетным образом) функции s(t)  L2(R) называют функцию двух переменных: С(a,b) = s(t), ψ(a,b,t) = , a, b  R, a ≠ 0.

Слайд 23





Понятие масштаба ВП
имеет аналогию с масштабом географических карт. Большие значения масштаба соответствуют глобальному представлению сигнала, а низкие значения масштаба позволяют различить детали. В терминах частоты низкие частоты соответствуют глобальной информации о сигнале, а высокие частоты - детальной информации и особенностям, которые имеют малую протяженность, т.е. масштаб вейвлета, как единица шкалы частотно-временного представления сигналов, обратен частоте. 
Масштабирование, как математическая операция, расширяет или сжимает сигнал. Большие значения масштабов соответствуют расширениям сигнала, а малые значения - сжатым версиям. В определении вейвлета коэффициент масштаба а стоит в знаменателе. Соответственно, а > 1 расширяет сигнал, а < 1 сжимает его.
Описание слайда:
Понятие масштаба ВП имеет аналогию с масштабом географических карт. Большие значения масштаба соответствуют глобальному представлению сигнала, а низкие значения масштаба позволяют различить детали. В терминах частоты низкие частоты соответствуют глобальной информации о сигнале, а высокие частоты - детальной информации и особенностям, которые имеют малую протяженность, т.е. масштаб вейвлета, как единица шкалы частотно-временного представления сигналов, обратен частоте. Масштабирование, как математическая операция, расширяет или сжимает сигнал. Большие значения масштабов соответствуют расширениям сигнала, а малые значения - сжатым версиям. В определении вейвлета коэффициент масштаба а стоит в знаменателе. Соответственно, а > 1 расширяет сигнал, а < 1 сжимает его.

Слайд 24





Процедура преобразования
стартует с масштаба а=1 и продолжается при увеличивающихся значениях а, т.e. анализ начинается с высоких частот и проводится в сторону низких частот.
 Первое значение 'а' соответствует наиболее сжатому вейвлету. При увеличении значения 'а' вейвлет расширяется. Вейвлет помещается в начало сигнала (t=0), перемножается с сигналом, интегрируется на интервале своего задания и нормализуется на 1/        . 
При задании четных или нечетных функций вейвлетов результат вычисления С(a,b) помещается в точку (a=1, b=0) масштабно-временного спектра преобразования. Сдвиг b может рассматриваться как время с момента t=0, при этом координатная ось b, по существу, повторяет временную ось сигнала. 
Для полного включения в обработку всех точек входного сигнала требуется задание начальных (и конечных) условий преобразования (определенных значений входного сигнала при t<0 и t>tmax на полуширину окна вейвлета). При одностороннем задании вейвлетов результат относится, как правило, к временному положению средней точки окна вейвлета.
Описание слайда:
Процедура преобразования стартует с масштаба а=1 и продолжается при увеличивающихся значениях а, т.e. анализ начинается с высоких частот и проводится в сторону низких частот. Первое значение 'а' соответствует наиболее сжатому вейвлету. При увеличении значения 'а' вейвлет расширяется. Вейвлет помещается в начало сигнала (t=0), перемножается с сигналом, интегрируется на интервале своего задания и нормализуется на 1/ . При задании четных или нечетных функций вейвлетов результат вычисления С(a,b) помещается в точку (a=1, b=0) масштабно-временного спектра преобразования. Сдвиг b может рассматриваться как время с момента t=0, при этом координатная ось b, по существу, повторяет временную ось сигнала. Для полного включения в обработку всех точек входного сигнала требуется задание начальных (и конечных) условий преобразования (определенных значений входного сигнала при t<0 и t>tmax на полуширину окна вейвлета). При одностороннем задании вейвлетов результат относится, как правило, к временному положению средней точки окна вейвлета.

Слайд 25





Затем вейвлет масштаб а=1 сдвигается вправо на значение b и процедура повторяется. Получаем значение, соответствующее t=b в строке а=1 на частотно-временном плане. Процедура повторяется до тех пор, пока вейвлет не достигнет конца сигнала. Таким образом получаем строку точек на масштабно-временном плане для масштаба а=1.
Затем вейвлет масштаб а=1 сдвигается вправо на значение b и процедура повторяется. Получаем значение, соответствующее t=b в строке а=1 на частотно-временном плане. Процедура повторяется до тех пор, пока вейвлет не достигнет конца сигнала. Таким образом получаем строку точек на масштабно-временном плане для масштаба а=1.
Для вычисления следующей масштабной строки значение а увеличивается на некоторое значение. При НВП в аналитической форме Δb0 и Δa0.
 При выполнении преобразования в компьютере вычисляется аппроксимация с увеличением обоих параметров с определенным шагом. Тем самым мы осуществляем дискретизацию масштабно-временной плоскости.
Описание слайда:
Затем вейвлет масштаб а=1 сдвигается вправо на значение b и процедура повторяется. Получаем значение, соответствующее t=b в строке а=1 на частотно-временном плане. Процедура повторяется до тех пор, пока вейвлет не достигнет конца сигнала. Таким образом получаем строку точек на масштабно-временном плане для масштаба а=1. Затем вейвлет масштаб а=1 сдвигается вправо на значение b и процедура повторяется. Получаем значение, соответствующее t=b в строке а=1 на частотно-временном плане. Процедура повторяется до тех пор, пока вейвлет не достигнет конца сигнала. Таким образом получаем строку точек на масштабно-временном плане для масштаба а=1. Для вычисления следующей масштабной строки значение а увеличивается на некоторое значение. При НВП в аналитической форме Δb0 и Δa0. При выполнении преобразования в компьютере вычисляется аппроксимация с увеличением обоих параметров с определенным шагом. Тем самым мы осуществляем дискретизацию масштабно-временной плоскости.

Слайд 26





Начальное значение масштабного коэффициента может быть и меньше 1. В принципе, для детализации самых высоких частот сигнала минимальных размер окна вейвлета не должен превышать периода самой высокочастотной гармоники. Если в сигнале присутствуют спектральные компоненты, соответствующие текущему значению а, то интеграл произведения вейвлета с сигналом в интервале, где эта спектральная компонента присутствует, дает относительно большое значение. В противном случае - произведение мало или равно нулю, т.к. среднее значение вейвлетной функции равно нулю. С увеличением масштаба (ширины окна) вейвлета преобразование выделяет все более низкие частоты.
Начальное значение масштабного коэффициента может быть и меньше 1. В принципе, для детализации самых высоких частот сигнала минимальных размер окна вейвлета не должен превышать периода самой высокочастотной гармоники. Если в сигнале присутствуют спектральные компоненты, соответствующие текущему значению а, то интеграл произведения вейвлета с сигналом в интервале, где эта спектральная компонента присутствует, дает относительно большое значение. В противном случае - произведение мало или равно нулю, т.к. среднее значение вейвлетной функции равно нулю. С увеличением масштаба (ширины окна) вейвлета преобразование выделяет все более низкие частоты.
Описание слайда:
Начальное значение масштабного коэффициента может быть и меньше 1. В принципе, для детализации самых высоких частот сигнала минимальных размер окна вейвлета не должен превышать периода самой высокочастотной гармоники. Если в сигнале присутствуют спектральные компоненты, соответствующие текущему значению а, то интеграл произведения вейвлета с сигналом в интервале, где эта спектральная компонента присутствует, дает относительно большое значение. В противном случае - произведение мало или равно нулю, т.к. среднее значение вейвлетной функции равно нулю. С увеличением масштаба (ширины окна) вейвлета преобразование выделяет все более низкие частоты. Начальное значение масштабного коэффициента может быть и меньше 1. В принципе, для детализации самых высоких частот сигнала минимальных размер окна вейвлета не должен превышать периода самой высокочастотной гармоники. Если в сигнале присутствуют спектральные компоненты, соответствующие текущему значению а, то интеграл произведения вейвлета с сигналом в интервале, где эта спектральная компонента присутствует, дает относительно большое значение. В противном случае - произведение мало или равно нулю, т.к. среднее значение вейвлетной функции равно нулю. С увеличением масштаба (ширины окна) вейвлета преобразование выделяет все более низкие частоты.

Слайд 27


Основы вейвлет-преобразования сигналов, слайд №27
Описание слайда:

Слайд 28





Обратное преобразование
 Так как форма базисных функций (a,b,t) зафиксирована, то вся информация о сигнале в S(t) переносится на значения функции С(a,b). Точность обратного интегрального вейвлет-преобразования зависит от выбора базисного вейвлета и способа построения базиса, т.е. от значений базисных параметров a, b. Для практических целей непрерывного преобразования часто бывает вполне достаточна устойчивость и "приблизительность" ортогональности системы разложения функций. Под устойчивостью понимается достаточно точная реконструкция произвольных сигналов. Для ортонормированных вейвлетов обратное вейвлет-преобразование записывается с помощью того же базиса, что и прямое:
Описание слайда:
Обратное преобразование Так как форма базисных функций (a,b,t) зафиксирована, то вся информация о сигнале в S(t) переносится на значения функции С(a,b). Точность обратного интегрального вейвлет-преобразования зависит от выбора базисного вейвлета и способа построения базиса, т.е. от значений базисных параметров a, b. Для практических целей непрерывного преобразования часто бывает вполне достаточна устойчивость и "приблизительность" ортогональности системы разложения функций. Под устойчивостью понимается достаточно точная реконструкция произвольных сигналов. Для ортонормированных вейвлетов обратное вейвлет-преобразование записывается с помощью того же базиса, что и прямое:

Слайд 29





Обратное преобразование
Описание слайда:
Обратное преобразование

Слайд 30





ВЕЙВЛЕТНАЯ ОЧИСТКА ОТ ШУМОВ И СЖАТИЕ СИГНАЛОВ 
Типовой метод подавления шумов – удаление высокочастотных составляющих из спектра сигнала. Применительно к вейвлетным разложениям это может быть реализовано непосредственно удалением детализирующих коэффициентов высокочастотных уровней. 
Вейвлеты имеют в этом отношении более широкие возможности. Шумовые компоненты, и особенно большие случайные выбросы значений сигналов, можно также рассматривать в виде множеств локальных особенностей сигналов. Задавая некоторый порог для их уровня и срезая по нему детализирующие коэффициенты, можно не только уменьшать уровень шумов, но и устанавливать пороговые ограничения на нескольких уровнях разложения с учетом конкретных характеристик шумов и сигналов для различных типов вейвлетов. Это позволяет создавать адаптивные системы очистки сигналов от шумов в зависимости от их особенностей.
Описание слайда:
ВЕЙВЛЕТНАЯ ОЧИСТКА ОТ ШУМОВ И СЖАТИЕ СИГНАЛОВ Типовой метод подавления шумов – удаление высокочастотных составляющих из спектра сигнала. Применительно к вейвлетным разложениям это может быть реализовано непосредственно удалением детализирующих коэффициентов высокочастотных уровней. Вейвлеты имеют в этом отношении более широкие возможности. Шумовые компоненты, и особенно большие случайные выбросы значений сигналов, можно также рассматривать в виде множеств локальных особенностей сигналов. Задавая некоторый порог для их уровня и срезая по нему детализирующие коэффициенты, можно не только уменьшать уровень шумов, но и устанавливать пороговые ограничения на нескольких уровнях разложения с учетом конкретных характеристик шумов и сигналов для различных типов вейвлетов. Это позволяет создавать адаптивные системы очистки сигналов от шумов в зависимости от их особенностей.

Слайд 31





Операция сжатия сигналов с удалением малозначимых значений вейвлет - коэффициентов также выполняется на основе определенных пороговых ограничений их значений, и во многом практически тождественна операциям удаления шумов 
Операция сжатия сигналов с удалением малозначимых значений вейвлет - коэффициентов также выполняется на основе определенных пороговых ограничений их значений, и во многом практически тождественна операциям удаления шумов
Описание слайда:
Операция сжатия сигналов с удалением малозначимых значений вейвлет - коэффициентов также выполняется на основе определенных пороговых ограничений их значений, и во многом практически тождественна операциям удаления шумов Операция сжатия сигналов с удалением малозначимых значений вейвлет - коэффициентов также выполняется на основе определенных пороговых ограничений их значений, и во многом практически тождественна операциям удаления шумов

Слайд 32





Модель зашумленного сигнала обычно принимается аддитивной: s(n) = f(n)+k·e(n) с равномерным шагом по аргументу n, где f(n) – полезная информационная составляющая, e(n) – шумовой сигнал, например, белый шум определенного уровня со средним нулевым значением. Процедура удаления шума выполняется с использованием ортогональных вейвлетов и включает в себя следующие операции:
Модель зашумленного сигнала обычно принимается аддитивной: s(n) = f(n)+k·e(n) с равномерным шагом по аргументу n, где f(n) – полезная информационная составляющая, e(n) – шумовой сигнал, например, белый шум определенного уровня со средним нулевым значением. Процедура удаления шума выполняется с использованием ортогональных вейвлетов и включает в себя следующие операции:
- Вейвлет-разложение сигнала s(n) до уровня N. Значение уровня N определяется частотным спектром информационной части f(n) сигнала, которую желательно оставлять в рядах аппроксимационных коэффициентов. Тип и порядок вейвлета может существенно влиять на качество очистки сигнала от шума в зависимости как от формы сигналов f(n), так и от корреляционных характеристик шумов.
- Задание типа и пороговых уровней очистки по известным априорным данным о характере шумов или по определенным критериям шумов во входном сигнале. Пороговые уровни очистки могут быть гибкими (в зависимости от номера уровня разложения) или жесткими (глобальными).
- Модификация коэффициентов детализации вейвлет-разложения в соответствии с установленными условиями очистки.
- Восстановление сигнала на основе коэффициентов аппроксимации и модифицированных детализационных коэффициентов.
Описание слайда:
Модель зашумленного сигнала обычно принимается аддитивной: s(n) = f(n)+k·e(n) с равномерным шагом по аргументу n, где f(n) – полезная информационная составляющая, e(n) – шумовой сигнал, например, белый шум определенного уровня со средним нулевым значением. Процедура удаления шума выполняется с использованием ортогональных вейвлетов и включает в себя следующие операции: Модель зашумленного сигнала обычно принимается аддитивной: s(n) = f(n)+k·e(n) с равномерным шагом по аргументу n, где f(n) – полезная информационная составляющая, e(n) – шумовой сигнал, например, белый шум определенного уровня со средним нулевым значением. Процедура удаления шума выполняется с использованием ортогональных вейвлетов и включает в себя следующие операции: - Вейвлет-разложение сигнала s(n) до уровня N. Значение уровня N определяется частотным спектром информационной части f(n) сигнала, которую желательно оставлять в рядах аппроксимационных коэффициентов. Тип и порядок вейвлета может существенно влиять на качество очистки сигнала от шума в зависимости как от формы сигналов f(n), так и от корреляционных характеристик шумов. - Задание типа и пороговых уровней очистки по известным априорным данным о характере шумов или по определенным критериям шумов во входном сигнале. Пороговые уровни очистки могут быть гибкими (в зависимости от номера уровня разложения) или жесткими (глобальными). - Модификация коэффициентов детализации вейвлет-разложения в соответствии с установленными условиями очистки. - Восстановление сигнала на основе коэффициентов аппроксимации и модифицированных детализационных коэффициентов.

Слайд 33





Пример
Описание слайда:
Пример

Слайд 34





Пример удаления шумов с настройкой локальных порогов уровней
Описание слайда:
Пример удаления шумов с настройкой локальных порогов уровней

Слайд 35





На рис. отпечаток пальца внизу сжат в десятки раз, но разрешающая способность по основным линиям дактилоскопии при этом практически не изменилась. Сжатие изображений в настоящее время широко применяется при хранении огромных объемов технической информации.
На рис. отпечаток пальца внизу сжат в десятки раз, но разрешающая способность по основным линиям дактилоскопии при этом практически не изменилась. Сжатие изображений в настоящее время широко применяется при хранении огромных объемов технической информации.
Описание слайда:
На рис. отпечаток пальца внизу сжат в десятки раз, но разрешающая способность по основным линиям дактилоскопии при этом практически не изменилась. Сжатие изображений в настоящее время широко применяется при хранении огромных объемов технической информации. На рис. отпечаток пальца внизу сжат в десятки раз, но разрешающая способность по основным линиям дактилоскопии при этом практически не изменилась. Сжатие изображений в настоящее время широко применяется при хранении огромных объемов технической информации.

Слайд 36





Изменение вейвлет-спектра
Описание слайда:
Изменение вейвлет-спектра

Слайд 37





Удаление шумов
Описание слайда:
Удаление шумов

Слайд 38


Основы вейвлет-преобразования сигналов, слайд №38
Описание слайда:

Слайд 39





ОЧИСТКА СИГНАЛОВ ОТ ШУМА В ПАКЕТЕ GUI
Описание слайда:
ОЧИСТКА СИГНАЛОВ ОТ ШУМА В ПАКЕТЕ GUI

Слайд 40


Основы вейвлет-преобразования сигналов, слайд №40
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию