🗊 Плазма Электрический ток в плазме

Категория: Физика
Нажмите для полного просмотра!
  
  Плазма  Электрический ток в плазме  , слайд №1  
  Плазма  Электрический ток в плазме  , слайд №2  
  Плазма  Электрический ток в плазме  , слайд №3  
  Плазма  Электрический ток в плазме  , слайд №4  
  Плазма  Электрический ток в плазме  , слайд №5  
  Плазма  Электрический ток в плазме  , слайд №6  
  Плазма  Электрический ток в плазме  , слайд №7  
  Плазма  Электрический ток в плазме  , слайд №8  
  Плазма  Электрический ток в плазме  , слайд №9  
  Плазма  Электрический ток в плазме  , слайд №10  
  Плазма  Электрический ток в плазме  , слайд №11  
  Плазма  Электрический ток в плазме  , слайд №12  
  Плазма  Электрический ток в плазме  , слайд №13

Вы можете ознакомиться и скачать Плазма Электрический ток в плазме . Презентация содержит 13 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Плазма
Электрический ток в плазме
Описание слайда:
Плазма Электрический ток в плазме

Слайд 2





Что такое плазма?
- это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера - слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма - в газоразрядных лампах.
Описание слайда:
Что такое плазма? - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера - слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма - в газоразрядных лампах.

Слайд 3





4 стихии и плазма
Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёхагрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь.[1] Свойства плазмы изучает физика плазмы.
Описание слайда:
4 стихии и плазма Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёхагрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь.[1] Свойства плазмы изучает физика плазмы.

Слайд 4





Формы плазмы
Искусственно созданная плазма (плазменная лампа, плазменные ракетные двигатели и т.д.)
Земная природная плазма (молния, северное сияние)
Космическая плазма
Описание слайда:
Формы плазмы Искусственно созданная плазма (плазменная лампа, плазменные ракетные двигатели и т.д.) Земная природная плазма (молния, северное сияние) Космическая плазма

Слайд 5





Плазма бывает:
Низкотемпературная ( при температурах ниже 100 000К)
Высокотемпературная ( при температурах больше 100 000К)
Идеальная
Неидеальная
Равновесная
Неравновесная
Описание слайда:
Плазма бывает: Низкотемпературная ( при температурах ниже 100 000К) Высокотемпературная ( при температурах больше 100 000К) Идеальная Неидеальная Равновесная Неравновесная

Слайд 6





Сложные плазменные явления!
Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Описание слайда:
Сложные плазменные явления! Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Слайд 7





Получение плазмы
Способ создания плазмы путем обычного нагрева вещества – не самый распространенный. Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Только в парах щелочных металлов (таких, например, каккалий, натрий или цезий) электрическую проводимость газа можно заметить уже при 2000–3000° С, это связано с тем, что в атомах одновалентных щелочных металлов электрон внешней оболочки гораздо слабее связан с ядром, чем в атомах других элементов периодической системы элементов (т.е. обладает более низкой энергией ионизации)
Описание слайда:
Получение плазмы Способ создания плазмы путем обычного нагрева вещества – не самый распространенный. Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Только в парах щелочных металлов (таких, например, каккалий, натрий или цезий) электрическую проводимость газа можно заметить уже при 2000–3000° С, это связано с тем, что в атомах одновалентных щелочных металлов электрон внешней оболочки гораздо слабее связан с ядром, чем в атомах других элементов периодической системы элементов (т.е. обладает более низкой энергией ионизации)

Слайд 8





Получение плазмы
Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, т.е. создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод (катод) испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур (термоэмиссия), либо облучением катода каким-либо коротковолновым излучением (рентгеновские лучи, g-излучение), способным выбивать электроны из металла (фотоэффект). Такой разряд, создаваемый внешними источниками, называется несамостоятельным.
Описание слайда:
Получение плазмы Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, т.е. создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод (катод) испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур (термоэмиссия), либо облучением катода каким-либо коротковолновым излучением (рентгеновские лучи, g-излучение), способным выбивать электроны из металла (фотоэффект). Такой разряд, создаваемый внешними источниками, называется несамостоятельным.

Слайд 9





Основные свойства плазмы
- высокая электропроводность
- сильное взаимодействие с внешними электрическими и магнитными полями.
При температуре больше 100000 градусов
любое вещество находится в состоянии плазмы.
Интересно, что 99% вещества во Вселенной - плазма.
Описание слайда:
Основные свойства плазмы - высокая электропроводность - сильное взаимодействие с внешними электрическими и магнитными полями. При температуре больше 100000 градусов любое вещество находится в состоянии плазмы. Интересно, что 99% вещества во Вселенной - плазма.

Слайд 10





Токи в плазме
Суммарный ток в плазме можно записать как сумму трех компонент в ортогональных направлениях


J = σ0 (E•b)b + σп[bx(Exb)] - σx(Exb) 

где первый член определяется продольной проводимостью σ0 и задает ток вдоль магнитной силовой линии, второй - проводимостью Педерсена в направлении вектора электрического поля и третий, ток Холла, течет в направлении перпендикулярном как к к электрическому так и к магнитному полю. 

В слое Е ионосферы педерсеновская и холловская проводимости достаточно велики, выше превалирует продольная проводимость,а в нижней ионосфере при высокой частоте соударений холловский ток мал, педерсеновская и продольная проодимости примерно равны. 
Описание слайда:
Токи в плазме Суммарный ток в плазме можно записать как сумму трех компонент в ортогональных направлениях J = σ0 (E•b)b + σп[bx(Exb)] - σx(Exb)  где первый член определяется продольной проводимостью σ0 и задает ток вдоль магнитной силовой линии, второй - проводимостью Педерсена в направлении вектора электрического поля и третий, ток Холла, течет в направлении перпендикулярном как к к электрическому так и к магнитному полю.  В слое Е ионосферы педерсеновская и холловская проводимости достаточно велики, выше превалирует продольная проводимость,а в нижней ионосфере при высокой частоте соударений холловский ток мал, педерсеновская и продольная проодимости примерно равны. 

Слайд 11





Физики получили самую плотную материю
Очередной рекорд был поставлен в рамках эксперимента, воспроизводящего условия сразу после Большого взрыва. Созданная в Большом адронном коллайдере материя была значительно горячее центра Солнца и плотнее недр нейтронной звезды.
Описание слайда:
Физики получили самую плотную материю Очередной рекорд был поставлен в рамках эксперимента, воспроизводящего условия сразу после Большого взрыва. Созданная в Большом адронном коллайдере материя была значительно горячее центра Солнца и плотнее недр нейтронной звезды.

Слайд 12





Плазма
Описание слайда:
Плазма

Слайд 13





Спасибо за внимание!
Над проектом работали:
Гладковская А. 
Позняк М.
Описание слайда:
Спасибо за внимание! Над проектом работали: Гладковская А. Позняк М.



Похожие презентации
Mypresentation.ru
Загрузить презентацию